洛谷.1919.[模板]A*B Problem升级版(FFT)
//将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式
//可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位
//n位*n位最多就只有2n位了
//putchar的速度。。还是快的
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=6e4+5;
const double PI=acos(-1);
int n,ans[N<<1];
struct Complex
{
double x,y;
Complex(double xx=0,double yy=0) {x=xx, y=yy;}
Complex operator + (const Complex &a) {return Complex(x+a.x, y+a.y);}
Complex operator - (const Complex &a) {return Complex(x-a.x, y-a.y);}
Complex operator * (const Complex &a) {return Complex(x*a.x-y*a.y, x*a.y+y*a.x);}
}A[N*3],B[N*3];
inline void read(Complex *a)
{
int cnt=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);a[cnt++].x=(double)(c-'0'),c=gc());
}
void Fast_Fourier_Transform(Complex *a,int lim,int opt)
{
for(int j=0,i=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
}
int main()
{
scanf("%d",&n);
read(A), read(B);
std::reverse(A,A+n), std::reverse(B,B+n);
int lim=1;
while(lim <= n<<1) lim<<=1;
Fast_Fourier_Transform(A,lim,1);
Fast_Fourier_Transform(B,lim,1);
for(int i=0; i<=lim; ++i) A[i]=A[i]*B[i];
Fast_Fourier_Transform(A,lim,-1);
int t=n<<1;
for(int i=0; i<=t; ++i) ans[i]=(int)(A[i].x/lim+0.5);
for(int i=0; i<t; ++i) ans[i+1]+=ans[i]/10, ans[i]%=10;
while(!ans[t] && t) --t;
while(~t) putchar(ans[t--]+'0');
return 0;
}
洛谷.1919.[模板]A*B Problem升级版(FFT)的更多相关文章
- 【洛谷P1919】A*B Problem升级版
题目大意:rt 题解:将长度为 N 的大整数看作是一个 N-1 次的多项式,利用 FFT 计算多项式的卷积即可. 代码如下 #include <bits/stdc++.h> using n ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【洛谷p1601】A+B Problem(高精)
高精度加法的思路还是很简单容易理解的 A+B Problem(高精)[传送门] 洛谷算法标签: 附上代码(最近懒得一批) #include<iostream> #include<cs ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷CF868F Yet Another Minimization Problem(动态规划,决策单调性,分治)
洛谷题目传送门 貌似做所有的DP题都要先搞出暴力式子,再往正解上靠... 设\(f_{i,j}\)为前\(i\)个数分\(j\)段的最小花费,\(w_{l,r}\)为\([l,r]\)全在一段的费用. ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
随机推荐
- Windows下 Robhess SIFT源码配置
Robhess OpenSIFT 源码下载:传送门 为了进一步学习SIFT,选择论文就着代码看,在VS2013.OpenCV2.4.13下新建项目,跑一跑经典之作.由于将代码和Opencv配置好后还会 ...
- arm-linux-gcc/ld/objcopy/objdump参数总结【转】
arm-linux-gcc/ld/objcopy/objdump参数总结 转自:http://blog.csdn.net/muyuyuzhong/article/details/7755291 arm ...
- manjaro 的配置
一.更新源的配置: 1).自动方法: 在 终端 执行下面的命令从官方的源列表中对中国源进行测速和设置 sudo pacman-mirrors -c China 2).手动方法 自动方法(上面的方法1, ...
- jrockit静默安装笔记
操作系统安装版本:CentOS-6.4-i386-minimal JDK安装版本:jrockit-jdk1.6.0_20-R28.1.0-4.0.1-linux-ia32 1.通过SecureFX工具 ...
- mybatis二级缓存应用及与ehcache整合
mybaits的二级缓存是mapper范围级别,除了在SqlMapConfig.xml设置二级缓存的总开关,还要在具体的mapper.xml中开启二级缓存. 1.开启mybatis的二级缓存 在核心配 ...
- 使用ajax上传表单(带文件)
在使用form表单的时候上传文件+表单,会使得页面跳转,而在某些时候不希望跳转,只变化页面中的局部信息 通过查找资料,可以使用FormData进行ajax操作. FormData介绍:XMLHttpR ...
- CopyPropertis
commons-beanutils.jar PropertyUtils.copyProperties(Object dest, Object orig) spring-beans.jar BeanUt ...
- 【splunk】启动停止
在控制台 splunk目录/bin下 ./splunk start #启动 ./splunk stop #停止 启动时出错,需要更改一下SPLUNK的配置 $SPLUNK_HOME/etc/splun ...
- 【linux】crontab失效
在linux上,crontab任务全部使用完整路径,但是任务无效. 检测crontab 服务是否启动, /etc/init.d/cron status /etc/init.d/cron restart
- python 全栈开发,Day18(对象之间的交互,类命名空间与对象,实例的命名空间,类的组合用法)
一.对象之间的交互 现在我们已经有一个人类了,通过给人类一些具体的属性我们就可以拿到一个实实在在的人.现在我们要再创建一个狗类,狗就不能打人了,只能咬人,所以我们给狗一个bite方法.有了狗类,我们还 ...