题目链接

\(Description\)

给定一棵树,点有点权。\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少。

\(Solution\)

对于给定数集的询问,我们可以建Trie树,从高位到低位贪心地走(能走优的就走)。

同树上的主席树一样,利用父节点的根节点建树,就是可持久化Trie。

令\(w=LCA(u,v)\)。因为只是xor一个数,所以用\(u,v,w\)三个点的根节点就可以了,最后再判断一下\(w\)是否可能更优(不需要\(fa[w]\))。

在\(u,v,w\)三棵Trie上走,若\(sz[u]+sz[v]-2*sz[w]>0\)则能走。

区间询问同理也可以做。

//1201MS	30704K
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define BIT 15
const int N=1e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],A[N],root[N],fa[N],dep[N],sz[N],son[N],top[N];
struct Trie
{
#define S N*20//N*18为什么不够啊
int tot,sz[S],son[S][2]; inline int New_Node()
{
++tot, sz[tot]=0, son[tot][0]=son[tot][1]=0;
return tot;
}
void Insert(int x,int y,int v)
{
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
son[x][c]=New_Node(), son[x][c^1]=son[y][c^1];
x=son[x][c], y=son[y][c];
sz[x]=sz[y]+1;//上面根节点的sz不需要加
}
}
int Query(int x,int y,int w,int v)
{
int res=0,tmp=A[w]^v;
w=root[w];
for(int i=BIT; ~i; --i)
{
int c=(v>>i&1)^1;
if(sz[son[x][c]]+sz[son[y][c]]-2*sz[son[w][c]]>0)
x=son[x][c], y=son[y][c], w=son[w][c], res|=1<<i;
else
c^=1, x=son[x][c], y=son[y][c], w=son[w][c];
}
return std::max(res,tmp);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
T.Insert(root[x]=T.New_Node()/**/,root[fa[x]],A[x]);
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x] && v!=son[x]) DFS2(v,v);
}
} int main()
{
int n;
while(~scanf("%d",&n))
{
T.tot=Enum=0, memset(H,0,sizeof H);
memset(son,0,sizeof son);//!
// memset(root,0,sizeof root); int Q=read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1), DFS2(1,1);
for(int u,v; Q--; ) u=read(),v=read(),printf("%d\n",T.Query(root[u],root[v],LCA(u,v),read()));
}
return 0;
}

HDU.4757.Tree(可持久化Trie)的更多相关文章

  1. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  2. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  3. HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)

    Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Su ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  7. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  8. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

  9. 可持久化Trie模板

    如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决 ...

随机推荐

  1. numpy中 array数组的shape属性

    numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属 ...

  2. RNN(3) ------ “blog:RNN学习之路”

    博客链接:http://blog.csdn.net/yangyangyang20092010/article/details/50374289 Recurrent Neural Network 学习之 ...

  3. linux内核capable源代码分析【转】

    转自:https://blog.csdn.net/sanwenyublog/article/details/50856849 linux内核里对于进程的权限管理有一个很重要的函数capable,以前看 ...

  4. BootStrap学习从现在开始

    前言 原文链接 http://aehyok.com/Blog/Detail/6.html 当下最流行的前端开发框架Bootstrap,可大大简化网站开发过程,从而深受广大开发者的喜欢.本文总结了Boo ...

  5. CentOS 6.3下NFS安装配置

    CentOS 6.3下NFS安装配置 一.环境介绍   NFS服务器:CentOS6.3 192.168.8.20 NFS客户端:CentOS6.5 192.168.8.39 二.服务器端安装配置   ...

  6. Android数据存储:SQLite

    Android数据存储之SQLite SQLite:Android提供的一个标准的数据库,支持SQL语句.用来处理数据量较大的数据.△ SQLite特征:1.轻量性2.独立性3.隔离性4.跨平台性5. ...

  7. android录音实现不再担心—一个案例帮你解决你的问题

    最近有小伙伴经常android的录音怎么实现,有没有相关的案例.今天给大家推荐一个android中实现录音和播放的小案例. 效果图: 一.实现录音的 Service 关键代码: // 开始录音 pub ...

  8. PHP中的一些常用函数

    <?php //===============================时间日期=============================== //y返回年最后两位,Y年四位数,m月份数字 ...

  9. Luogu P4944 【PION贪吃蛇】

    简单模拟题 用一个数据结构存储这条蛇 考虑蛇的移动 1,如果死了,就把整个蛇清空,所有位置标记为食物 2,如果吃了东西,把这个位置更新为蛇头 3,如果正常走路,这个位置设为蛇头,同时删掉尾巴 蛇的存储 ...

  10. python 全栈开发,Day72(昨日作业讲解,昨日内容回顾,Django多表创建)

    昨日作业讲解 1.图书管理系统 实现功能:book单表的增删改查 1.1 新建一个项目bms,创建应用book.过程略... 1.2 手动创建static目录,并在目录里面创建css文件夹,修改set ...