题目链接

\(Description\)

给定一棵树,点有点权。\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少。

\(Solution\)

对于给定数集的询问,我们可以建Trie树,从高位到低位贪心地走(能走优的就走)。

同树上的主席树一样,利用父节点的根节点建树,就是可持久化Trie。

令\(w=LCA(u,v)\)。因为只是xor一个数,所以用\(u,v,w\)三个点的根节点就可以了,最后再判断一下\(w\)是否可能更优(不需要\(fa[w]\))。

在\(u,v,w\)三棵Trie上走,若\(sz[u]+sz[v]-2*sz[w]>0\)则能走。

区间询问同理也可以做。

//1201MS	30704K
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define BIT 15
const int N=1e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],A[N],root[N],fa[N],dep[N],sz[N],son[N],top[N];
struct Trie
{
#define S N*20//N*18为什么不够啊
int tot,sz[S],son[S][2]; inline int New_Node()
{
++tot, sz[tot]=0, son[tot][0]=son[tot][1]=0;
return tot;
}
void Insert(int x,int y,int v)
{
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
son[x][c]=New_Node(), son[x][c^1]=son[y][c^1];
x=son[x][c], y=son[y][c];
sz[x]=sz[y]+1;//上面根节点的sz不需要加
}
}
int Query(int x,int y,int w,int v)
{
int res=0,tmp=A[w]^v;
w=root[w];
for(int i=BIT; ~i; --i)
{
int c=(v>>i&1)^1;
if(sz[son[x][c]]+sz[son[y][c]]-2*sz[son[w][c]]>0)
x=son[x][c], y=son[y][c], w=son[w][c], res|=1<<i;
else
c^=1, x=son[x][c], y=son[y][c], w=son[w][c];
}
return std::max(res,tmp);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
T.Insert(root[x]=T.New_Node()/**/,root[fa[x]],A[x]);
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x] && v!=son[x]) DFS2(v,v);
}
} int main()
{
int n;
while(~scanf("%d",&n))
{
T.tot=Enum=0, memset(H,0,sizeof H);
memset(son,0,sizeof son);//!
// memset(root,0,sizeof root); int Q=read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1), DFS2(1,1);
for(int u,v; Q--; ) u=read(),v=read(),printf("%d\n",T.Query(root[u],root[v],LCA(u,v),read()));
}
return 0;
}

HDU.4757.Tree(可持久化Trie)的更多相关文章

  1. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  2. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  3. HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)

    Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Su ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  7. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  8. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

  9. 可持久化Trie模板

    如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决 ...

随机推荐

  1. MAC上mongodb连接不上

    1.在Mac客户端里输入 mongo,发现mongo连接不上了,原因是mongo的服务没有开启. 2.在命令行了输入 mongod,开启服务的命令 3.启动起来以后,用mongo连接服务器.

  2. centos 设置定时任务执行指定脚本的方法

    vim /etc/crontab SHELL=/bin/bashPATH=/sbin:/bin:/usr/sbin:/usr/binMAILTO=rootHOME=/ # For details se ...

  3. startup_MK64F12.s文件解析

    1.前言 本文主要对freescale芯片 MK64F12的启动汇编文件进行注释解析. 2.文件注释 /* ---------------------------------------------- ...

  4. CentOs 6.6里kdump启动失败的原因

    在VMware中新安装了CentOs 6.6,重启系统发现kdump服务启动失败 先来说一下,什么是kdump kdump 是一种先进的基于 kexec 的内核崩溃转储机制.当系统崩溃时,kdump ...

  5. Oracle11默认用户名和密码

    安装Oracle时,若没有为下列用户重设密码,则其默认密码如下: 用户名 / 密码                      登录身份                              说明s ...

  6. Intellij IDEA14 搜索框及控制台乱码解决

    搜索ctrl+F及ctrl+H的搜索框.调试的时候控制台.导入module都显示为为中文乱码 如下: 解决方案: File->Setting->IDE Settings->Appea ...

  7. PYTHON-操作系统基础

    预习:操作系统基础1,编程语言的分类2,多版本共存3,执行python程序的两种方式4,变量5,输入输出6,运算符7,基本数据类型8,流程控制之if ------------------------- ...

  8. LeetCode(5):最长回文子串

    Medium! 题目描述: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 长度最长为1000. 示例: 输入: "babad" 输出: "bab&quo ...

  9. 关于java中Stream理解

    关于java中Stream理解 Stream是什么 Stream:Java 8新增的接口,Stream可以认为是一个高级版本的Iterator.它代表着数据流,流中的数据元素的数量可以是有限的, 也可 ...

  10. cf787c 博弈论+记忆化搜索

    好题,单纯的就是pn状态的推导 /* 把第一个点标为0,剩下的点按1-n-1编号 胜态是1,败态为0,dp[i][j]表示第i个人,怪兽起始位置在j时的胜负态 把0点设置为必败态,然后对于一个人来说, ...