题目链接

\(Description\)

给定一棵树,点有点权。\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少。

\(Solution\)

对于给定数集的询问,我们可以建Trie树,从高位到低位贪心地走(能走优的就走)。

同树上的主席树一样,利用父节点的根节点建树,就是可持久化Trie。

令\(w=LCA(u,v)\)。因为只是xor一个数,所以用\(u,v,w\)三个点的根节点就可以了,最后再判断一下\(w\)是否可能更优(不需要\(fa[w]\))。

在\(u,v,w\)三棵Trie上走,若\(sz[u]+sz[v]-2*sz[w]>0\)则能走。

区间询问同理也可以做。

//1201MS	30704K
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define BIT 15
const int N=1e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],A[N],root[N],fa[N],dep[N],sz[N],son[N],top[N];
struct Trie
{
#define S N*20//N*18为什么不够啊
int tot,sz[S],son[S][2]; inline int New_Node()
{
++tot, sz[tot]=0, son[tot][0]=son[tot][1]=0;
return tot;
}
void Insert(int x,int y,int v)
{
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
son[x][c]=New_Node(), son[x][c^1]=son[y][c^1];
x=son[x][c], y=son[y][c];
sz[x]=sz[y]+1;//上面根节点的sz不需要加
}
}
int Query(int x,int y,int w,int v)
{
int res=0,tmp=A[w]^v;
w=root[w];
for(int i=BIT; ~i; --i)
{
int c=(v>>i&1)^1;
if(sz[son[x][c]]+sz[son[y][c]]-2*sz[son[w][c]]>0)
x=son[x][c], y=son[y][c], w=son[w][c], res|=1<<i;
else
c^=1, x=son[x][c], y=son[y][c], w=son[w][c];
}
return std::max(res,tmp);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
T.Insert(root[x]=T.New_Node()/**/,root[fa[x]],A[x]);
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x] && v!=son[x]) DFS2(v,v);
}
} int main()
{
int n;
while(~scanf("%d",&n))
{
T.tot=Enum=0, memset(H,0,sizeof H);
memset(son,0,sizeof son);//!
// memset(root,0,sizeof root); int Q=read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1), DFS2(1,1);
for(int u,v; Q--; ) u=read(),v=read(),printf("%d\n",T.Query(root[u],root[v],LCA(u,v),read()));
}
return 0;
}

HDU.4757.Tree(可持久化Trie)的更多相关文章

  1. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  2. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  3. HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)

    Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Su ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  7. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  8. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

  9. 可持久化Trie模板

    如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决 ...

随机推荐

  1. Dubbo服务超时

    服务消费者引用服务提供者的服务时可能由于网络原因导致长时间未返回相应,此时大量的线程将会阻塞,引起性能下降等问题.可以通过引入服务超时来解决该问题 服务超时指服务在给定的时间内未返回相应将立即终止该请 ...

  2. 【转】SSH服务详解

    [转]SSH服务详解 第1章 SSH服务 1.1 SSH服务协议说明 SSH 是 Secure Shell Protocol 的简写,由 IETF 网络工作小组(Network Working Gro ...

  3. 【转】Python之列表生成式、生成器、可迭代对象与迭代器

    [转]Python之列表生成式.生成器.可迭代对象与迭代器 本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterabl ...

  4. GCC的符号可见性——解决多个库同名符号冲突问题

    引用自:https://github.com/wwbmmm/blog/wiki/gcc_visibility 问题 最近项目遇到一些问题,场景如下 主程序依赖了两个库libA的funcA函数和libB ...

  5. 分布式系列 - dubbo服务telnet命令【转】

    dubbo服务发布之后,我们可以利用telnet命令进行调试.管理.Dubbo2.0.5以上版本服务提供端口支持telnet命令,下面我以通过实例抛砖引玉一下: 1.连接服务 测试对应IP和端口下的d ...

  6. python获取当前环境的编码

    # coding:gbk import sys import locale def p(f): print '%s.%s(): %s' % (f.__module__, f.__name__, f() ...

  7. oracle 11g 空表导出

    背景 oracle9用了一段时间,10用了一段时间,11现在算是主流了.11g也是坑人,空表竟然不导出,解决方法到时很多.这里只是记录下,知道有这个事情. 9的特点是还要用客户端管理工具链接服务器 1 ...

  8. uboot 传递的参数 mtdparts

    启动uboot后,在重新烧写程序之前,查看传递给内核的参数时(命令为: printenv),看到如下内容: bootargs=console=ttyS0,115200 mtdparts=spi0.0: ...

  9. 支付宝&微信统一支付

    1.实体对应关系: Application  — 支付记录实体 --  支付记录详情 2.流程 1.生成订单选择支付类型 2.支付宝:PC端.手机端.扫码:微信:微信公众号支付.扫码支付.H5支付. ...

  10. shell脚本收集服务器基本信息并入库

    # cat check_all.sh #!/bin/bash #create by hexm @2016.6 #date=`date +%Y%m%d` #DIST_FILE=/app/healthch ...