题目链接

\(Description\)

给定一棵树,每条边上有一个字符(a~v)。对每个节点,求它的子树中一条最长的路径,满足 路径上所有边上的字符可以重新排列成一个回文串。输出其最长长度。

\(n\leq 5\times10^5\)。

\(Solution\)

可以构成回文串,即要么所有字符都出现了偶数次,要么有一个出现了奇数次、其余都出现了偶数次。

转化为异或!把每个字符c(0~21)映射到1<<c上去。

令\(s[x]\)表示根节点到\(x\)路径上边权的异或和。那么路径\((u,v)\)满足条件当且仅当\(s[u]\ xor\ s[v]\)等于\(0\)或是某个二次幂。

而路径\((u,v)\)的答案是\(dep[u]+dep[v]-dep[LCA]*2\)。在LCA处计算,这样只需要对每个状态求它最大的\(dep\)。

而且更新时只有23种方式(对于\(s[v]\),可以从\(\max\{dep[s[v]]\}\)和\(\max\{dep[s[v]\
xor\ 2^i]\}\)更新)。

dsu on tree求每个子树的\(\max\{dep[s]\}\)就好了。

复杂度\(O(23n\log n)\)。

//608ms	79100KB
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e5+5,INF=0x3f3f3f3f; int Enum,H[N],nxt[N],to[N],ch[N],s[N],f[(1<<22)+2],L[N],R[N],A[N],dep[N],sz[N],son[N],Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v,int c)
{
to[++Enum]=v, nxt[Enum]=H[u], ch[Enum]=c, H[u]=Enum;
}
void DFS1(int x)
{
static int Index=0;
A[L[x]=++Index]=x;
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
dep[v=to[i]]=dep[x]+1, s[v]=s[x]^ch[i], DFS1(v), sz[x]+=sz[v], sz[v]>mx&&(mx=sz[v],son[x]=v);
R[x]=Index;
}
inline int Add(int s,int d,int delta)
{
int ans=f[s]+d-delta;
for(int i=0; i<22; ++i) ans=std::max(ans,f[s^(1<<i)]+d-delta);//d[u]+d[v]-d[LCA]*2
return ans;
}
void DFS2(int x,int keep)
{
int ans=0;
for(int i=H[x]; i; i=nxt[i]) if(to[i]!=son[x]) DFS2(to[i],0),ans=std::max(ans,Ans[to[i]]);
if(son[x]) DFS2(son[x],1),ans=std::max(ans,Ans[son[x]]); ans=std::max(ans,Add(s[x],0,dep[x])), f[s[x]]=std::max(f[s[x]],dep[x]);
for(int i=H[x],v,delta=dep[x]<<1; i; i=nxt[i])
if((v=to[i])!=son[x])
{
for(int j=L[v]; j<=R[v]; ++j) ans=std::max(ans,Add(s[A[j]],dep[A[j]],delta));
for(int j=L[v]; j<=R[v]; ++j) f[s[A[j]]]=std::max(f[s[A[j]]],dep[A[j]]);
}
Ans[x]=ans;
if(!keep) for(int i=L[x]; i<=R[x]; ++i) f[s[A[i]]]=-INF;
} int main()
{
int n=read();
for(int i=2,x,c; i<=n; ++i)
{
x=read(),c=gc(); while(!isalpha(c)) c=gc();
AE(x,i,1<<c-'a');
}
memset(f,-0x3f,sizeof f);//没有的值不能用0更新
DFS1(1), DFS2(1,1);
for(int i=1; i<=n; ++i) printf("%d ",Ans[i]); return 0;
}

Codeforces.741D.Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree 思路)的更多相关文章

  1. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  2. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    题目链接:Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 第一次写\(dsu\ on\ tree\),来记录一下 \(dsu\ o ...

  3. Codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)

    感觉dsu on tree一定程度上还是与点分类似的.考虑求出跨过每个点的最长满足要求的路径,再对子树内取max即可. 重排后可以变成回文串相当于出现奇数次的字母不超过1个.考虑dsu on tree ...

  4. CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]

    D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...

  5. [Codeforces741D]Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths——dsu on tree

    题目链接: Codeforces741D 题目大意:给出一棵树,根为$1$,每条边有一个$a-v$的小写字母,求每个点子树中的一条最长的简单路径使得这条路径上的边上的字母重排后是一个回文串. 显然如果 ...

  6. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths——dsu on tree

    题目描述 一棵根为1 的树,每条边上有一个字符(a-v共22种). 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串. 求每个子树中最长的Dokhtar- ...

  7. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths (dsu on tree) 题解

    先说一下dsu算法. 例题:子树众数问题. 给出一棵树,每个点有点权,求每个子树中出现次数最多的数的出现次数. 树的节点数为n,\(n \leq 500000\) 这个数据范围,\(O(n \sqrt ...

  8. dsu on tree (树上启发式合并) 详解

    一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...

  9. [探究] dsu on tree,一类树上离线问题的做法

    dsu on tree. \(\rm 0x01\) 前言\(\&\)技术分析 \(\bold{dsu~on~tree}\),中文别称"树上启发式合并"(虽然我并不承认这种称 ...

随机推荐

  1. A1pass大大对黑客学习的建议

    本文转自:http://bbs.hackav.com/thread-92-1-1.html 菜鸟不可怕,可怕的是你认为自己一辈子都是菜鸟.每个高手都是从菜鸟进化过来的,就算是现在黑客界的泰斗们当年也无 ...

  2. 一个优秀的 ring buffer 或 cycle buffer 的实现代码

    #define CIRCLE_BUFFSIZE 1024 * 1024#define min(x, y) ((x) < (y) ? (x) : (y)) struct cycle_buffer ...

  3. python中的这些坑,早看早避免。

    python中的这些坑,早看早避免. 说一说python中遇到的坑,躲坑看这一篇就够了 传递参数时候不要使用列表 def foo(num,age=[]): age.append(num) print( ...

  4. 红黑树与AVL树

    概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...

  5. js使用中的小问题----textarea是否有value属性

    使用jquery的选择器时想给textarea设置一个默认值时,采取了下面的方法: 不过失败了,但是看教程上确实成功的,那么肯定是有问题的. 经过上网查找以及自己验证发现: 1.textarea标签确 ...

  6. CentOS----kdump failed

    启动提示:Starting kdump [failed] kdump 是一种先进的基于 kexec 的内核崩溃转储机制.当系统崩溃时,kdump 使用 kexec 启动到第二个内核.第二个内核通常叫做 ...

  7. Ubungu 18.04安装MySQL 5.7.24

    Ubuntu 18.04,mysql Ver 14.14 Distrib 5.7.24, for Linux (x86_64), USERNAME@USERNAME-VirtualBox:~$ sud ...

  8. PLSQL developer 连接不上64位Oracle 解决办法

    在64位Windows7上安装Oracle后,用PLSQL developer去连接数据库出现报错: Could not load "……\bin\oci.dll" OCIDLL ...

  9. Redis五大数据类型以及操作

    目录: 一.redis的两种链接方式 二.redis的字符串操作(string) 三.redis的列表操作(list) 四.redis的散列表操作(类似于字典里面嵌套字典) 五.redis的集合操作( ...

  10. list的遍历

    package list; import java.util.ArrayList;import java.util.Iterator;import java.util.List; /* * list的 ...