利用TensorFlow实现多元逻辑回归
利用TensorFlow实现多元逻辑回归,代码如下:
import tensorflow as tf
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import preprocessing # Read x and y
x_data = np.loadtxt("ex4x.dat").astype(np.float32)
y_data = np.loadtxt("ex4y.dat").astype(np.float32) scaler = preprocessing.StandardScaler().fit(x_data)
x_data_standard = scaler.transform(x_data) # We evaluate the x and y by sklearn to get a sense of the coefficients.
reg = LogisticRegression(C=999999999, solver="newton-cg") # Set C as a large positive number to minimize the regularization effect
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_)) # Now we use tensorflow to get similar results.
W = tf.Variable(tf.zeros([2, 1]))
b = tf.Variable(tf.zeros([1, 1]))
y = 1 / (1 + tf.exp(-tf.matmul(x_data_standard, W) + b))
loss = tf.reduce_mean(- y_data.reshape(-1, 1) * tf.log(y) - (1 - y_data.reshape(-1, 1)) * tf.log(1 - y)) optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten()) print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % (sess.run(W).flatten() / scaler.scale_, sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W)))) # Problem solved and we are happy. But...
# I'd like to implement the logistic regression from a multi-class viewpoint instead of binary.
# In machine learning domain, it is called softmax regression
# In economic and statistics domain, it is called multinomial logit (MNL) model, proposed by Daniel McFadden, who shared the 2000 Nobel Memorial Prize in Economic Sciences. print ("------------------------------------------------")
print ("We solve this binary classification problem again from the viewpoint of multinomial classification")
print ("------------------------------------------------") # As a tradition, sklearn first
reg = LogisticRegression(C=9999999999, solver="newton-cg", multi_class="multinomial")
reg.fit(x_data, y_data)
print ("Coefficients of sklearn: K=%s, b=%f" % (reg.coef_, reg.intercept_))
print ("A little bit difference at first glance. What about multiply them with 2?") # Then try tensorflow
W = tf.Variable(tf.zeros([2, 2])) # first 2 is feature number, second 2 is class number
b = tf.Variable(tf.zeros([1, 2]))
V = tf.matmul(x_data_standard, W) + b
y = tf.nn.softmax(V) # tensorflow provide a utility function to calculate the probability of observer n choose alternative i, you can replace it with `y = tf.exp(V) / tf.reduce_sum(tf.exp(V), keep_dims=True, reduction_indices=[1])` # Encode the y label in one-hot manner
lb = preprocessing.LabelBinarizer()
lb.fit(y_data)
y_data_trans = lb.transform(y_data)
y_data_trans = np.concatenate((1 - y_data_trans, y_data_trans), axis=1) # Only necessary for binary class loss = tf.reduce_mean(-tf.reduce_sum(y_data_trans * tf.log(y), reduction_indices=[1]))
optimizer = tf.train.GradientDescentOptimizer(1.3)
train = optimizer.minimize(loss) init = tf.initialize_all_variables() sess = tf.Session()
sess.run(init)
for step in range(100):
sess.run(train)
if step % 10 == 0:
print (step, sess.run(W).flatten(), sess.run(b).flatten()) print ("Coefficients of tensorflow (input should be standardized): K=%s, b=%s" % (sess.run(W).flatten(), sess.run(b).flatten()))
print ("Coefficients of tensorflow (raw input): K=%s, b=%s" % ((sess.run(W) / scaler.scale_).flatten(), sess.run(b).flatten() - np.dot(scaler.mean_ / scaler.scale_, sess.run(W))))
数据集下载:下载地址
利用TensorFlow实现多元逻辑回归的更多相关文章
- 利用TensorFlow实现多元线性回归
利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...
- 逻辑回归原理_挑战者飞船事故和乳腺癌案例_Python和R_信用评分卡(AAA推荐)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- scikit-learn 逻辑回归类库使用小结
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-lear ...
- scikit_learn逻辑回归类库
来自:刘建平 1.概述 在scikit-learn中,与逻辑回归有关的主要有3个类.LogisticRegression, LogisticRegressionCV 和 logistic_regres ...
- Sklearn实现逻辑回归
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...
- 线性回归、逻辑回归(LR)
线性回归 回归是一种极易理解的模型,就相当于y=f(x),表明自变量 x 和因变量 y 的关系.最常见问题有如 医生治病时的望.闻.问.切之后判定病人是否生了什么病,其中的望闻问切就是获得自变量x,即 ...
- 逻辑回归(Logistic Regression)算法小结
一.逻辑回归简述: 回顾线性回归算法,对于给定的一些n维特征(x1,x2,x3,......xn),我们想通过对这些特征进行加权求和汇总的方法来描绘出事物的最终运算结果.从而衍生出我们线性回归的计算公 ...
- 通俗地说逻辑回归【Logistic regression】算法(二)sklearn逻辑回归实战
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklear ...
- sklearn逻辑回归(Logistic Regression,LR)调参指南
python信用评分卡建模(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_ca ...
随机推荐
- 在 .NET Framework Data Provider for Microsoft SQL Server Compact 3.5 中发生错误
32位机器删除 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\version\DataProviders\{7C602B5B-ACCB-4acd ...
- ubuntu经常断网、掉线、上不去网的原因
方案一: ubuntu经常断网.掉线.上不去网的原因,很可能是因为IPv6的关系,Ubuntu默认开启IPv6,在“设置--wifi--齿轮图标”中关掉就可以了. 经我环境测试,此方法无效 方案二: ...
- [No000014A]Linux简介与shell编程
Linux 介绍 内核 库: .so 共享对象,windows:dll 动态链接库 应用程序 Linux的基本原则: 1.由目的单一的小程序组成:组合小程序完成复杂任务: 2.一切皆文件: 3.尽量避 ...
- Spring <context:annotation-config> 与<context-component-scan> 的作用
<context:annotation-config> 与<context-component-scan> 的作用 <context:annotation-config& ...
- log4j.properties 日志文件的详细配置说明
一.在一个web 项目中,使用tomcat 启动通常会在控制台输出出现一个警告信息: 通常为未添加 log4j.properties文件的原因. 二.下面以一个普通的maven项目为例说明一下 1. ...
- [troubleshoot][daily][redhat] 设备反复重启故障排查
一台服务器设备,反复重启,每天重启数次. 一: 原因分析及初步排异. 1. 硬件,内存主板,一一更换,甚至除了硬盘将整台机器都换掉了,依然重启. 2. 排除电源问题,换了电源线,换了插座,还是重启 ...
- word 使用总结
1.标题: 开始->标题栏 2.插入目录: 引用---->更新目录 3.保持分页:页面布局->分隔符->分页符
- LeetCode 509 Fibonacci Number 解题报告
题目要求 The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, su ...
- oracle日志归档空间清理
进入机器,设置环境变量,如: export ORACLE_HOME=/main/app/oracle/product//db_1 export ORACLE_SID=devdb 然后切换oracle用 ...
- 连连看java版
主界面 import java.awt.BorderLayout; import java.awt.Color; import java.awt.Container; import java.awt. ...