SDUT 2623:The number of steps
The number of steps
Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^
题目描述
Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third
layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have
its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the
probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?
输入
In each case , first Input a positive integer n(0
输出
示例输入
3
0.3 0.7
0.1 0.3 0.6
0
示例输出
3.41
迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方…
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
double dp[100][100];
int n;
double a,b,c,d,e;
int main()
{
while(cin>>n&&n)
{
cin>>a>>b>>c>>d>>e;
memset(dp,0,sizeof(dp));
for(int i=2; i<=n; i++)
dp[n][i]+=dp[n][i-1]+1;//处理最后一行
for(int i=n-1; i>=1; i--) //从倒数第二行开始处理
{
dp[i][1]+=a*(dp[i+1][1]+1)+b*(dp[i+1][2]+1);//处理每一行的第一列
for(int j=2; j<=n; j++)
dp[i][j]+=c*(dp[i+1][j]+1)+d*(dp[i+1][j+1]+1)+e*(dp[i][j-1]+1);//处理每一行的除了第一列以外的其它列
}
printf("%.2lf\n",dp[1][1]);
}
return 0;
}
SDUT 2623:The number of steps的更多相关文章
- SDUT 2623 The number of steps (概率)
The number of steps Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Mary stands in a stra ...
- sdutoj 2623 The number of steps
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2623 The number of steps ...
- 13年山东省赛 The number of steps(概率dp水题)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud The number of steps Time Limit: 1 Sec Me ...
- [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...
- Codeforces Round #411 div 2 D. Minimum number of steps
D. Minimum number of steps time limit per test 1 second memory limit per test 256 megabytes input st ...
- codeforce 804B Minimum number of steps
cf劲啊 原题: We have a string of letters 'a' and 'b'. We want to perform some operations on it. On each ...
- Minimum number of steps 805D
http://codeforces.com/contest/805/problem/D D. Minimum number of steps time limit per test 1 second ...
- Codeforces 805D - Minimum number of steps
805D - Minimum number of steps 思路:简单模拟,a每穿过后面一个b,b的个数+1,当这个a穿到最后,相当于把它后面的b的个数翻倍.每个a到达最后的步数相当于这个a与它后面 ...
- The number of steps(概率dp)
Description Mary stands in a strange maze, the maze looks like a triangle(the first layer have one r ...
随机推荐
- mysql 插入重复值 INSERT ... ON DUPLICATE KEY UPDATE
向数据库插入记录时,有时会有这种需求,当符合某种条件的数据存在时,去修改它,不存在时,则新增,也就是saveOrUpdate操作.这种控制可以放在业务层,也可以放在数据库层,大多数数据库都支持这种需求 ...
- zoj The 12th Zhejiang Provincial Collegiate Programming Contest Capture the Flag
http://acm.zju.edu.cn/onlinejudge/showContestProblem.do?problemId=5503 The 12th Zhejiang Provincial ...
- Python学习总结11:获取当前运行类名和函数名
一. 使用内置方法和修饰器方法获取类名.函数名 1. 外部获取 从外部的情况好获取,可以使用指向函数的对象,然后用__name__属性. def a(): pass a.__name__ 或者 get ...
- Java基础(31):String的大小写转换、分离成数组、==与equals()的区别(String类)
继续来看 String 类常用的方法,如下代码所示: 运行结果: 那么,“==” 和 equals() 有什么区别呢? ==: 判断两个字符串在内存中首地址是否相同,即判断是否是同一个字符串对象 eq ...
- ECharts切换主题
初始化接口,返回ECharts实例,其中dom为图表所在节点,theme为可选的主题,内置主题('macarons', 'infographic')直接传入名称,自定义扩展主题可传入主题对象.如: v ...
- kafka监控工具kafkaOffsetMoniter的使用
简介 KafkaOffsetMonitor是由Kafka开源社区提供的一款Web管理界面,用来实时监控Kafka的Consumer以及Partition中的Offset,可以在web界面直观的看到每个 ...
- Android DatePickerDialog TimepickerDialog
package com.example.myact5; import java.util.Calendar; import android.app.DatePickerDialog; import a ...
- 安装Elasticsearch,Logstash,Kibana(5.0.1-mac版)
安装Elasticsearch 1.下载https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.0.1.tar.gz包 ...
- mongodb版本管理
使用gradle. 查找最新版本http://mvnrepository.org/ compile "org.mongeez:mongeez:0.9.6" 配置spring < ...
- DFT basics
DFT测试中,最重要的部分还是sequential circuit的内部状态的测试. 起初ad hoc的方法用来提高testability,可以提高局部的coverage,但并不是一个系统性的方法. ...