Creating a URL stream using a Twitter filter

Start by creating the project directory and standard Maven folder structure (http://maven.apache.org/guides/introduction/introduction-to-the-standard- directory-layout.html).

1. Create the POM as per the Creating a "Hello World" topology recipe in Chapter 1, Setting Up Your Development Environment, updating the <artifactId> and <name> tag values to tfidf-topology, and include the following dependencies:

2. Import the project into Eclipse after generating the Eclipse project files:

mvn eclipse:eclipse

3. Create a new spout called TwitterSpout that extends from BaseRichSpout, and add the following member-level variables:

public class TwitterSpout extends BaseRichSpout {
    LinkedBlockingQueue<Status> queue = null;
    TwitterStream twitterStream;
    String[] trackTerms;
    long maxQueueDepth;
    SpoutOutputCollector collector;
}

4. In the open method of the spout, initialize the blocking queue and create a Twitter stream listener:

public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {

    queue = new LinkedBlockingQueue<Status>(1000);

    StatusListener listener = new StatusListener() {
        @Override
        public void onStatus(Status status) {
            if(queue.size() < maxQueueDepth){
                 LOG.trace("TWEET Received: " + status);
                 queue.offer(status);
            }
            else {
              LOG.error("Queue is now full, the following message is dropped: "+status);
            }
        }
    };

    twitterStream = new TwitterStreamFactory().getInstance();
    twitterStream.addListener(listener);

    FilterQuery filter = new FilterQuery();
    filter.count(0);
    filter.track(trackTerms);
    twitterStream.filter(filter);
}

5. Then create the Twitter stream and filter

6. You then need to emit the tweet into the topology.

public void nextTuple() {

    Status ret = queue.poll();

    if(ret == null) {
        try {
            Thread.sleep(50);
        }
        catch (InterruptedException e) {}
    }
    else {
        collector.emit(new Values(ret));
    }
}

7. Next, you must create a bolt to publish the tuple persistently to another topology within the same cluster. Create a BaseRichBolt class called PublishURLBolt that doesn't declare any fields, and provide the following execute method:

public class PublishURLBolt extends BaseRichBolt {

    public void execute(Tuple input) {
        Status ret = (Status) input.getValue(0);
        URLEntity[] urls = ret.getURLEntities();

        for(int i = 0; i < urls.length; i++) {
              jedis.rpush("url", urls[i].getURL().trim());
        }
    }
} 

8. Finally, you will need to read the URL into a stream in the Trident topology. To do this, create another spout called TweetURLSpout:

public class TweetURLSpout {

    @Override
    public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
        outputFieldsDeclarer.declare(new Fields("url"));
    }

    @Override
    public void open(Map conf, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
        host = conf.get(Conf.REDIS_HOST_KEY).toString();
        port = Integer.valueOf(conf.get(Conf.REDIS_PORT_KEY).toString());
        this.collector = spoutOutputCollector;

        connectToRedis();
    }

    private void connectToRedis() {
        jedis = new Jedis(host, port);
    }

    @Override
    public void nextTuple() {
        String url = jedis.rpop("url");
        if(url==null) {
            try {
                Thread.sleep(50);
            }
            catch (InterruptedException e) {}
        }
        else {
            collector.emit(new Values(url));
        }
    }
} 

Deriving a clean stream of terms from the documents

This recipe consumes the URL stream, downloading the document content and deriving a clean stream of terms that are suitable for later analysis. 

A clean term is defined as a word that:
> Is not a stop word
> Is a valid dictionary word
> Is not a number or URL
> Is a lemma

A lemma is the canonical form of a word; for example, run, runs, ran, and running are forms of the same lexeme with "run" as the lemma. Lexeme, in this context, refers to the set of all the forms that have the same meaning, and lemma refers to the particular form that is chosen by convention to represent the lexeme.

The lemma is important for this recipe because it enables us to group terms that have the same meaning. Where their frequency of occurrence is important, this grouping is important.

1. Create a class named DocumentFetchFunction, that extends from storm.trident.operation.BaseFunction, and provide the following implementation for the execute method:

public class DocumentFetchFunction extends BaseFunction {

    public void execute(TridentTuple tuple, TridentCollector collector) {
        String url = tuple.getStringByField("url");
        try {
            Parser parser = new AutoDetectParser();
            Metadata metadata = new Metadata();
            ParseContext parseContext = new ParseContext();
            URL urlObject = new URL(url);
            ContentHandler handler = new BodyContentHandler(10 * 1024 * 1024);

            parser.parse((InputStream)urlObject.getContent(), handler, metadata, parseContext);
            String[] mimeDetails = metadata.get("Content-Type").split(";");
            if ((mimeDetails.length > 0) && (mimeTypes.contains(mimeDetails[0]))) {
               collector.emit(new Values(handler.toString(), url.trim(), "twitter"));
            }
        }
        catch (Exception e) {
        }
    }
}

2. Next we need to tokenize the document, create another class that extends from BaseFunction and call it DocumentTokenizer. Provide the following execute implementation:

public class DocumentTokenizer extends BaseFunction {

    public void execute(TridentTuple tuple, TridentCollector collector) {
        String documentContents = tuple.getStringByField(TfidfTopologyFields.DOCUMENT);
        TokenStream ts = null;

        try {
            ts = new StopFilter(Version.LUCENE_30,
                  new StandardTokenizer(Version.LUCENE_30, new StringReader(documentContents)),
                  StopAnalyzer.ENGLISH_STOP_WORDS_SET);

             CharTermAttribute termAtt = ts.getAttribute(CharTermAttribute.class);
            while(ts.incrementToken()) {
                  String lemma = MorphaStemmer.stemToken(termAtt.toString());
                  lemma = lemma.trim().replaceAll("\n","").replaceAll("\r", "");
                collector.emit(new Values(lemma));
              }

              ts.close();
        }
        catch (IOException e) {
             LOG.error(e.toString());
        }
        finally {
              if(ts != null) {
                try {
                      ts.close();
                }
                catch (IOException e) {}
            }
        }
    }
}

3. We then need to filter out all the invalid terms that may be emitted by this function. To do this, we need to implement another class that extends BaseFunction called TermFilter. The execute method of this function will simply call a checking function to optionally emit the received tuple. The checking function isKeep() should perform the following validations:

public class TermFilter extends BaseFunction {

    public void execute(TridentTuple tuple, TridentCollector collector) {
        //call isKeep() method
    }

    private boolean isKeep() {
        if(stem == null) {
              return false;
          }

        if(stem.equals("")) {
              return false;
          }

        if(filterTerms.contains(stem)) {
              return false;
          }

        //we don't want integers
        try {
              Integer.parseInt(stem);
              return false;
        }
        catch(Exception e) {}

        //or floating point numbers
        try {
              Double.parseDouble(stem);
              return false;
        }
        catch(Exception e) {}

        try {
              return spellchecker.exist(stem);
        }
        catch (Exception e) {
              LOG.error(e.toString());
              return false;
        }
    }
}

4. The dictionary needs to be initialized during the prepare method for this function:

public void prepare(Map conf, TridentOperationContext context){
    super.prepare(conf, context);

    File dir = new File(System.getProperty("user.home") + "/dictionaries");
    Directory directory;

    try {
        directory = FSDirectory.open(dir);
        spellchecker = new SpellChecker(directory);
        StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_36);
        IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_36, analyzer);
        URL dictionaryFile = TermFilter.class.getResource("/dictionaries/fulldictionary00.txt");

        spellchecker.indexDictionary(new PlainTextDictionary(new File(dictionaryFile.toURI())), config, true);
    }
    catch (Exception e) {
        LOG.error(e.toString());
        throw new RuntimeException(e);
    }
}

5. Download the dictionary file from http://dl.dropbox.com/u/7215751/ JavaCodeGeeks/LuceneSuggestionsTutorial/fulldictionary00.zip and place it in the src/main/resources/dictionaries folder of your project structure.

6. Finally, you need to create the actual topology, or at least partially for the moment. Create a class named TermTopology that provides a main(String[] args) method and creates a local mode cluster:

public class TermTopology {

    public static void main(String[] args) {
           Config conf = new Config();
        conf.setMaxSpoutPending(20);
        conf.put(Conf.REDIS_HOST_KEY, "localhost");
        conf.put(Conf.REDIS_PORT_KEY, Conf.DEFAULT_JEDIS_PORT);

        if (args.length == 0) {
            LocalDRPC drpc = new LocalDRPC();
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("tfidf", conf, buildTopology(drpc));
            Thread.sleep(60000);
        }
    }
}

7. Then build the appropriate portion of the topology:

public static StormTopology buildTopology(LocalDRPC drpc) {

    TridentTopology topology = new TridentTopology();
    FixedBatchSpout testSpout = new FixedBatchSpout(new Fields("url"), 1, new Values("http://t.co/hP5PM6fm"), new Values("http://t.co/xSFteG23"));
    testSpout.setCycle(true);

    Stream documentStream = topology
        .newStream("tweetSpout", testSpout)
        .parallelismHint(20)
        .each(new Fields("url"), new DocumentFetchFunction(mimeTypes), new Fields("document", "documentId", "source"));

    Stream termStream = documentStream
        .parallelismHint(20)
        .each(new Fields("document"), new DocumentTokenizer(), new Fields("dirtyTerm"))
        .each(new Fields("dirtyTerm"), new TermFilter(), new Fields("term")).project(new Fields("term","documentId","source"));
}

Storm(3) - Calculating Term Importance with Trident的更多相关文章

  1. twitter storm源码走读之7 -- trident topology可靠性分析

    欢迎转载,转载请注明出处,徽沪一郎. 本文详细分析TridentTopology的可靠性实现, TridentTopology通过transactional spout与transactional s ...

  2. Storm入门(十四)Trident API Overview

    The core data model in Trident is the "Stream", processed as a series of batches. A stream ...

  3. twitter storm源码走读之6 -- Trident Topology执行过程分析

    欢迎转载,转载请注明出处,徽沪一郎. TridentTopology是storm提供的高层使用接口,常见的一些SQL中的操作在tridenttopology提供的api中都有类似的影射.关于Tride ...

  4. storm事务

    1. storm 事务 对于容错机制,Storm通过一个系统级别的组件acker,结合xor校验机制判断一个msg是否发送成功,进而spout可以重发该msg,保证一个msg在出错的情况下至少被重发一 ...

  5. Storm系统架构以及代码结构学习

    转自:http://blog.csdn.net/androidlushangderen/article/details/45955833 storm学习系列:http://blog.csdn.net/ ...

  6. Storm编程入门API系列之Storm的Topology的stream grouping

    概念,见博客 Storm概念学习系列之stream grouping(流分组) Storm的stream grouping的Shuffle Grouping 它是随机分组,随机派发stream里面的t ...

  7. Storm编程入门API系列之Storm的定时任务实现

    概念,见博客 Storm概念学习系列之storm的定时任务 Storm的定时任务,分为两种实现方式,都是可以达到目的的. 我这里,分为StormTopologyTimer1.java   和  Sto ...

  8. Storm编程入门API系列之Storm的可靠性的ACK消息确认机制

    概念,见博客 Storm概念学习系列之storm的可靠性  什么业务场景需要storm可靠性的ACK确认机制? 答:想要保住数据不丢,或者保住数据总是被处理.即若没被处理的,得让我们知道. publi ...

  9. storm编程指南

    目录 storm编程指南 (一)创建spout (二)创建split-bolt (三)创建wordcount-bolt (四)创建report-bolt (五)创建topo storm编程指南 @(博 ...

随机推荐

  1. objc_msgSend(): Too many arguments to function call ,expected 0,have3

    runtime 使用的时候,需要设置一下: Build Setting--> Apple LLVM 6.0 - Preprocessing--> Enable Strict Checkin ...

  2. Android中的文件权限操作

    默认本工程创建的文件本工程对其有读写权限. 我们可以通过context.openFileOutput("文件名", 模式): 我们可以创建私有, 共有, 只读, 只写文件, 默认的 ...

  3. [转载] 为 Key-Value 数据库实现 MVCC 事务

    http://mp.weixin.qq.com/s?__biz=MzA5ODM5MDU3MA==&mid=400086920&idx=1&sn=b8174184059e2886 ...

  4. windos多线程编程

    随机数滚动发生器 #include <stdio.h> #include <Windows.h> #include <ctime> #include <pro ...

  5. 【转载】C++异常机制的学习

    参考了这篇文章:http://blog.chinaunix.net/uid-24517549-id-4079174.html 关于线程 进程和线程的概念相信各位看官早已耳熟能详.在这里,我只想带大家回 ...

  6. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  7. overflow:auto/hidden的应用

    一.自适应两栏布局 <!DOCTYPE html><html lang="zh-CN"><head> <meta charset=&quo ...

  8. hiho_1059_string matching content length

    题目大意 两个字符串strA和strB(长度最大为2100),他们中按照顺序有一些公共的子串,且公共子串的长度大于等于3,否则不认为是合法的,比如 abcdef 和 abcxcdef, 按照顺序有合法 ...

  9. dshow,Sample Grabber 从摄像头采集

    char* CCameraDS::QueryFrame() { long evCode, size = 0; #if CALLBACKMODE static double lastSampleTime ...

  10. C# Web中Session的使用

    1. 关于使用之前要注意的: 在使用session之前,一定要注意继承自System.Web.UI.Page,或在使用session时加上System.Web.HttpContext.Current: ...