Storm(3) - Calculating Term Importance with Trident
Creating a URL stream using a Twitter filter
Start by creating the project directory and standard Maven folder structure (http://maven.apache.org/guides/introduction/introduction-to-the-standard- directory-layout.html).
1. Create the POM as per the Creating a "Hello World" topology recipe in Chapter 1, Setting Up Your Development Environment, updating the <artifactId> and <name> tag values to tfidf-topology, and include the following dependencies:
2. Import the project into Eclipse after generating the Eclipse project files:
mvn eclipse:eclipse
3. Create a new spout called TwitterSpout that extends from BaseRichSpout, and add the following member-level variables:
public class TwitterSpout extends BaseRichSpout {
LinkedBlockingQueue<Status> queue = null;
TwitterStream twitterStream;
String[] trackTerms;
long maxQueueDepth;
SpoutOutputCollector collector;
}
4. In the open method of the spout, initialize the blocking queue and create a Twitter stream listener:
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
queue = new LinkedBlockingQueue<Status>(1000);
StatusListener listener = new StatusListener() {
@Override
public void onStatus(Status status) {
if(queue.size() < maxQueueDepth){
LOG.trace("TWEET Received: " + status);
queue.offer(status);
}
else {
LOG.error("Queue is now full, the following message is dropped: "+status);
}
}
};
twitterStream = new TwitterStreamFactory().getInstance();
twitterStream.addListener(listener);
FilterQuery filter = new FilterQuery();
filter.count(0);
filter.track(trackTerms);
twitterStream.filter(filter);
}
5. Then create the Twitter stream and filter
6. You then need to emit the tweet into the topology.
public void nextTuple() {
Status ret = queue.poll();
if(ret == null) {
try {
Thread.sleep(50);
}
catch (InterruptedException e) {}
}
else {
collector.emit(new Values(ret));
}
}
7. Next, you must create a bolt to publish the tuple persistently to another topology within the same cluster. Create a BaseRichBolt class called PublishURLBolt that doesn't declare any fields, and provide the following execute method:
public class PublishURLBolt extends BaseRichBolt {
public void execute(Tuple input) {
Status ret = (Status) input.getValue(0);
URLEntity[] urls = ret.getURLEntities();
for(int i = 0; i < urls.length; i++) {
jedis.rpush("url", urls[i].getURL().trim());
}
}
}
8. Finally, you will need to read the URL into a stream in the Trident topology. To do this, create another spout called TweetURLSpout:
public class TweetURLSpout {
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("url"));
}
@Override
public void open(Map conf, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
host = conf.get(Conf.REDIS_HOST_KEY).toString();
port = Integer.valueOf(conf.get(Conf.REDIS_PORT_KEY).toString());
this.collector = spoutOutputCollector;
connectToRedis();
}
private void connectToRedis() {
jedis = new Jedis(host, port);
}
@Override
public void nextTuple() {
String url = jedis.rpop("url");
if(url==null) {
try {
Thread.sleep(50);
}
catch (InterruptedException e) {}
}
else {
collector.emit(new Values(url));
}
}
}
Deriving a clean stream of terms from the documents
This recipe consumes the URL stream, downloading the document content and deriving a clean stream of terms that are suitable for later analysis.
A clean term is defined as a word that:
> Is not a stop word
> Is a valid dictionary word
> Is not a number or URL
> Is a lemma
A lemma is the canonical form of a word; for example, run, runs, ran, and running are forms of the same lexeme with "run" as the lemma. Lexeme, in this context, refers to the set of all the forms that have the same meaning, and lemma refers to the particular form that is chosen by convention to represent the lexeme.
The lemma is important for this recipe because it enables us to group terms that have the same meaning. Where their frequency of occurrence is important, this grouping is important.
1. Create a class named DocumentFetchFunction, that extends from storm.trident.operation.BaseFunction, and provide the following implementation for the execute method:
public class DocumentFetchFunction extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {
String url = tuple.getStringByField("url");
try {
Parser parser = new AutoDetectParser();
Metadata metadata = new Metadata();
ParseContext parseContext = new ParseContext();
URL urlObject = new URL(url);
ContentHandler handler = new BodyContentHandler(10 * 1024 * 1024);
parser.parse((InputStream)urlObject.getContent(), handler, metadata, parseContext);
String[] mimeDetails = metadata.get("Content-Type").split(";");
if ((mimeDetails.length > 0) && (mimeTypes.contains(mimeDetails[0]))) {
collector.emit(new Values(handler.toString(), url.trim(), "twitter"));
}
}
catch (Exception e) {
}
}
}
2. Next we need to tokenize the document, create another class that extends from BaseFunction and call it DocumentTokenizer. Provide the following execute implementation:
public class DocumentTokenizer extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {
String documentContents = tuple.getStringByField(TfidfTopologyFields.DOCUMENT);
TokenStream ts = null;
try {
ts = new StopFilter(Version.LUCENE_30,
new StandardTokenizer(Version.LUCENE_30, new StringReader(documentContents)),
StopAnalyzer.ENGLISH_STOP_WORDS_SET);
CharTermAttribute termAtt = ts.getAttribute(CharTermAttribute.class);
while(ts.incrementToken()) {
String lemma = MorphaStemmer.stemToken(termAtt.toString());
lemma = lemma.trim().replaceAll("\n","").replaceAll("\r", "");
collector.emit(new Values(lemma));
}
ts.close();
}
catch (IOException e) {
LOG.error(e.toString());
}
finally {
if(ts != null) {
try {
ts.close();
}
catch (IOException e) {}
}
}
}
}
3. We then need to filter out all the invalid terms that may be emitted by this function. To do this, we need to implement another class that extends BaseFunction called TermFilter. The execute method of this function will simply call a checking function to optionally emit the received tuple. The checking function isKeep() should perform the following validations:
public class TermFilter extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {
//call isKeep() method
}
private boolean isKeep() {
if(stem == null) {
return false;
}
if(stem.equals("")) {
return false;
}
if(filterTerms.contains(stem)) {
return false;
}
//we don't want integers
try {
Integer.parseInt(stem);
return false;
}
catch(Exception e) {}
//or floating point numbers
try {
Double.parseDouble(stem);
return false;
}
catch(Exception e) {}
try {
return spellchecker.exist(stem);
}
catch (Exception e) {
LOG.error(e.toString());
return false;
}
}
}
4. The dictionary needs to be initialized during the prepare method for this function:
public void prepare(Map conf, TridentOperationContext context){
super.prepare(conf, context);
File dir = new File(System.getProperty("user.home") + "/dictionaries");
Directory directory;
try {
directory = FSDirectory.open(dir);
spellchecker = new SpellChecker(directory);
StandardAnalyzer analyzer = new StandardAnalyzer(Version.LUCENE_36);
IndexWriterConfig config = new IndexWriterConfig(Version.LUCENE_36, analyzer);
URL dictionaryFile = TermFilter.class.getResource("/dictionaries/fulldictionary00.txt");
spellchecker.indexDictionary(new PlainTextDictionary(new File(dictionaryFile.toURI())), config, true);
}
catch (Exception e) {
LOG.error(e.toString());
throw new RuntimeException(e);
}
}
5. Download the dictionary file from http://dl.dropbox.com/u/7215751/ JavaCodeGeeks/LuceneSuggestionsTutorial/fulldictionary00.zip and place it in the src/main/resources/dictionaries folder of your project structure.
6. Finally, you need to create the actual topology, or at least partially for the moment. Create a class named TermTopology that provides a main(String[] args) method and creates a local mode cluster:
public class TermTopology {
public static void main(String[] args) {
Config conf = new Config();
conf.setMaxSpoutPending(20);
conf.put(Conf.REDIS_HOST_KEY, "localhost");
conf.put(Conf.REDIS_PORT_KEY, Conf.DEFAULT_JEDIS_PORT);
if (args.length == 0) {
LocalDRPC drpc = new LocalDRPC();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("tfidf", conf, buildTopology(drpc));
Thread.sleep(60000);
}
}
}
7. Then build the appropriate portion of the topology:
public static StormTopology buildTopology(LocalDRPC drpc) {
TridentTopology topology = new TridentTopology();
FixedBatchSpout testSpout = new FixedBatchSpout(new Fields("url"), 1, new Values("http://t.co/hP5PM6fm"), new Values("http://t.co/xSFteG23"));
testSpout.setCycle(true);
Stream documentStream = topology
.newStream("tweetSpout", testSpout)
.parallelismHint(20)
.each(new Fields("url"), new DocumentFetchFunction(mimeTypes), new Fields("document", "documentId", "source"));
Stream termStream = documentStream
.parallelismHint(20)
.each(new Fields("document"), new DocumentTokenizer(), new Fields("dirtyTerm"))
.each(new Fields("dirtyTerm"), new TermFilter(), new Fields("term")).project(new Fields("term","documentId","source"));
}
Storm(3) - Calculating Term Importance with Trident的更多相关文章
- twitter storm源码走读之7 -- trident topology可靠性分析
欢迎转载,转载请注明出处,徽沪一郎. 本文详细分析TridentTopology的可靠性实现, TridentTopology通过transactional spout与transactional s ...
- Storm入门(十四)Trident API Overview
The core data model in Trident is the "Stream", processed as a series of batches. A stream ...
- twitter storm源码走读之6 -- Trident Topology执行过程分析
欢迎转载,转载请注明出处,徽沪一郎. TridentTopology是storm提供的高层使用接口,常见的一些SQL中的操作在tridenttopology提供的api中都有类似的影射.关于Tride ...
- storm事务
1. storm 事务 对于容错机制,Storm通过一个系统级别的组件acker,结合xor校验机制判断一个msg是否发送成功,进而spout可以重发该msg,保证一个msg在出错的情况下至少被重发一 ...
- Storm系统架构以及代码结构学习
转自:http://blog.csdn.net/androidlushangderen/article/details/45955833 storm学习系列:http://blog.csdn.net/ ...
- Storm编程入门API系列之Storm的Topology的stream grouping
概念,见博客 Storm概念学习系列之stream grouping(流分组) Storm的stream grouping的Shuffle Grouping 它是随机分组,随机派发stream里面的t ...
- Storm编程入门API系列之Storm的定时任务实现
概念,见博客 Storm概念学习系列之storm的定时任务 Storm的定时任务,分为两种实现方式,都是可以达到目的的. 我这里,分为StormTopologyTimer1.java 和 Sto ...
- Storm编程入门API系列之Storm的可靠性的ACK消息确认机制
概念,见博客 Storm概念学习系列之storm的可靠性 什么业务场景需要storm可靠性的ACK确认机制? 答:想要保住数据不丢,或者保住数据总是被处理.即若没被处理的,得让我们知道. publi ...
- storm编程指南
目录 storm编程指南 (一)创建spout (二)创建split-bolt (三)创建wordcount-bolt (四)创建report-bolt (五)创建topo storm编程指南 @(博 ...
随机推荐
- javascript权威指南笔记--javascript语言核心(六)
通过ECMAScript 3创建的属性都是可写的.可枚举的.可配置的. 在ECMAScript 5中,数据属性的4个特性分别是它的值.可写性.可枚举性.可配置性.存取器属性的特性是读取.写入.可枚举性 ...
- iOS - UISearchController
前言 NS_CLASS_DEPRECATED_IOS(3_0, 8_0, "UISearchDisplayController has been replaced with UISearch ...
- html一般标签、常用标签、表格
body的属性: bgcolor 页面背景色 text 文字颜色 topmargin 上边距 leftmargi ...
- 对象导论 Thinking in Java 第一章
1.1 抽象过程 1.人们能够解决问题的复杂性直接取决于抽象的类型和质量. 1.2 每个对象都有一个接口 1.3 每个对象都提供服务 1.4 被隐藏的具体实现 1.程序猿分为:类创建者 和 客户端程序 ...
- [转载] 为 Key-Value 数据库实现 MVCC 事务
http://mp.weixin.qq.com/s?__biz=MzA5ODM5MDU3MA==&mid=400086920&idx=1&sn=b8174184059e2886 ...
- mysql 查询开销
1.select @@profiling;2.set @@session.profiling=on;3.show profiles;4.show profile for query 2;
- matplotlib库的常用知识
看看matplotlib是什么? matplotlib是python上的一个2D绘图库,它可以在夸平台上边出很多高质量的图像.综旨就是让简单的事变得更简单,让复杂的事变得可能.我们可以用matplot ...
- jQuery动态加载脚本 $.getScript();
jQuery.getScript("/path/to/myscript.js", function(data, status, jqxhr) { /* ...
- laravel 开启sql查询日志
\DB::enableQueryLog(); dd(\DB::getQueryLog());
- maven Connection refused: connect
现象: 本地可以访问错误提示中的地址.但使用maven无法下载jar包. 环境: 浏览器上网需要使用代理 解决方法: 设置成正常代理可以.具体方法可以下载一个代理工具.只要IE配置成能直接访问http ...