SUN dataset数据集,有两个不错的网址:

http://vision.princeton.edu/projects/2010/SUN/ (普林斯顿大学)

http://groups.csail.mit.edu/vision/SUN/ (麻省理工学院)

普林斯顿大学的SUN数据集主页:

SUN Database: Scene Categorization Benchmark

Abstract

Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods.

Paper

J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba.
SUN Database: Large-scale Scene Recognition from Abbey to Zoo.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva.
SUN Database: Exploring a Large Collection of Scene Categories
International Journal of Computer Vision (IJCV)

Benchmark Evaluation

We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. The results are shown in the figure on the right.

Results Visualization

We visualize the results using the combined kernel from all features for the first training and testing partition in the following webpage. For each of the 397 categories, we show the class name, the ROC curve, 5 sample traning images, 5 sample correct predictions, 5 most confident false positives (with true label), and 5 least confident false negatives (with wrong predicted label).

Image Database

The database contains 397 categories SUN dataset used in the benchmark of the paper. The number of images varies across categories, but there are at least 100 images per category, and 108,754 images in total. Images are in jpg, png, or gif format. The images provided here are for research purposes only.

Training and Testing Partition

For the results in the paper we use a subset of the dataset that has 50 training images and 50 testing images per class, averaging over the 10 partitions in the following. To plot the curve in Figure 4(b) of the paper, we use the first n=(1, 5, 10, 20) images outof the 50 training images per class for training, and use all the same 50 testing images for testing no matter what size the training set is. (If you are using Microsoft Windows, you may need to replace / by \ in the following files.)

Soucre Code for Benchmark Evaluation

Scene Hierarchy

We have manually built an overcomplete three-level hierarchy for all 908 scene categories. The scene categories are arranged in a 3-level tree: with 908 leaf nodes (SUN categories) connected to 15 parent nodes at the second level (basic-level categories) that are in turn connected to 3 nodes at the first level (superordinate categories) with the root node at the top. The hierarchy is not a tree, but a Directed Acyclic Graph. Many categories such as "hayfield" are duplicated in the hierarchy because there might be confusion over whether such a category belongs in the natural or man-made sub-hierarchies.

Explore SUN Database

Kernel Matrices for SVM

Feature Matrices

The feature matrices are avialble at THIS LINK.

Human Classification Experiments

DrawMe: A light-weight Javascript library for line drawing on a picture

DrawMe is a light-weight Javascript library to enable client-end line drawing on a picture in a web browser. It is targeted to provide a basis for self-define labeling tasks for computer vision researchers. It is different from LabelMe, which provides full support but fixed labeling interface. DrawMe is a Javascript library only and the users are required to write their own code to make use of this library for their specific need of labeling. DrawMe does not provide any server or server-end code for labeling, but gives the user greater flexibility for their specific need. It also comes with a simple example with Amazon Mechanical Turk interface that serializes Javascript DOM object into text for HTML form submission. The user can easily build their own labeling interface based on this MTurk example to make use for the Amazon Mechanical Turk for labeling, either using paid workers or the researchers themselves with MTurk sandbox.

——————————————————————————————我是分割线——————————————————————————————

麻省理工学院的SUN数据集主页:

Goals

The goal of the SUN database project is to provide researchers in computer vision, human perception, cognition and neuroscience, machine learning and data mining, computer graphics and robotics, with a comprehensive collection of annotated images covering a large variety of environmental scenes, places and the objects within. To build the core of the dataset, we counted all the entries that corresponded to names of scenes, places and environments (any concrete noun which could reasonably complete the phrase I am in a place, or Let’s go to the place), using WordNet English dictionary. Once we established a vocabulary for scenes, we collected images belonging to each scene category using online image search engines by quering for each scene category term, and annotate the objects in the images manually.

Scene Recognition Benchmark

To evaluate descriptors and classifiers for scene classification:

Object Detection Benchmark

The next collections contains only the fully annotated images from SUN. Each release contains the images from previous years.

Citation

If you find this dataset useful, please cite this paper (and refer the data as SUN397, SUN2012, or SUN):

To know more about the object annotation process (and the annotator), check this technical note:

Download Latest Dataset

You can download the raw SUN database using the LabelMe toolbox. If you do not have the latest version of the toolbox (or if you do not have the function SUNinstall.m), you should download the toolbox first:

 LabelMe toolbox

To download the latest version of the database enter the Matlab commands:

>> yourpathimages = 'SUNDATABASE/Images';
>> yourpathannotations = 'SUNDATABASE/Annotations';
>> SUNinstall(yourpathimages, yourpathannotations);

The variables yourpathimages and yourpathannotations should point to the local paths where you want to download the images and annotations.

The first time that you call SUNinstall it will download the full set of images and annotations. Subsequent calls to SUNinstall will only download any new images added since the last download and the full set of annotations. If the download is interrupted the next call will not download again the images already downloaded.

If you want to download only one folder, you can specify a folder name:

>> folder = 'b/beach';
>> SUNinstall(yourpathimages, yourpathannotations, folder);

As new images are annotated everyday, you will get a slightly changing version if you download the database several times. If you are looking for a frozen copy of the database, use the links in the benchmark sections above.

SUN dataset图像数据集下载的更多相关文章

  1. LabelMe图像数据集下载

    Download MATLAB Toolbox for the LabelMe Image Database 利用Matlab Toolbox工具箱下载图像库 一.下载Matlab Toolbox工具 ...

  2. 人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载

    人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计 ...

  3. 医学图像数据(二)——TCIA完整数据集下载方式

    1. 构建下载环境 l  TCIA数据集下载文件为.jnlp格式(JNLP(Java Network Launching Protocol )是java提供的一种可以通过浏览器直接执行java应用程序 ...

  4. MIT-Adobe FiveK Dataset 图片自动下载

    MIT-Adobe FiveK Dataset 图片自动下载 MIT-Adobe FiveK是现在很多做图像增强(image enhancement)与图像修饰(image retouching)方面 ...

  5. 022. ASP.NET为DataSet中数据集添加关系及动态创建主子表和添加主子表关系

    protected void Page_Load(object sender, EventArgs e) { string connectionString = "server=.;data ...

  6. DataSet离线数据集实例

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.W ...

  7. scikit-learn数据集下载太慢的问题

    有时候用scikit-learn在线下载数据时太慢,因为网络或者其他原因,这时候我们可以先把数据集下载到本地,然后再把这个数据集放到scikit-learn的data中,首先我们需要找到 scikit ...

  8. MS coco数据集下载

    2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...

  9. Kaggle数据集下载

    Kaggle数据集下载步骤: 安装Kaggle库: 注册Kaggle账户: 找到数据集,接受rules: 在My Account>>API中,点击Create New API Token, ...

随机推荐

  1. 向Array中添加选择排序

    选择排序思路 在无序区中选出最小的元素,然后将它和有序区的第一个元素交换位置. 选择排序实现 Function.prototype.method = function(name, func){ thi ...

  2. CentOS6.5 安装JDK1.7详细步骤参考

    一般情况下,我们都要将linux自带的OPENJDK卸载掉,然后安装SUN的JDK. 首先查看Linux自带的JDK是否已安装. 输入如下命令,查看已经安装的JAVA版本信息. 输入如下命令,查看JD ...

  3. 自动回复消息-微信公众平台开发4(asp.net)

    接着上一节的processRequest 处理函数,代码如下: /// <summary>    /// 处理微信发来的请求     /// </summary>    /// ...

  4. 解决jquery-easyui1.3.3 combobox 多选模式不兼容IE8问题

    扩展Array的原型对象,加入indexOf方法 if(!Array.prototype.indexOf){    Array.prototype.indexOf = function(target) ...

  5. X86架构CPU的逻辑原理

    本篇只是初略介绍X86的逻辑运行原理,并不涉及物理层面和汇编层面的知识. 一.冯洛伊曼体系的运作过程: 1.CPU的历史就不扯了,有兴趣的朋友可以网上搜一下. 2.X86CPU是基于冯洛伊曼架构体系, ...

  6. 华为HG8240光猫-破解-联通-2016-telnet-http

    序 我与大家想法基本一致,拿到联通的光猫后,心想它应该是个路由器吧,如果让它自己拨号上网就好了,即省一台路由器,又省电了.抱着这个想法,在2013年里,我搜罗了不少文章,经过Q群,搜索,询问,阅读,理 ...

  7. 【BZOJ】【4027】【HEOI2015】兔子与樱花

    贪心 树上贪心问题……跟APIO2015练习赛的C很像啊…… 我的思路是:从叶子向上考虑,令a[x]表示x这个节点上樱花数量与儿子个数的和(即对于任意的x,都有$a[x]\leq m$)每次从儿子的a ...

  8. 【CodeForces】【311C】Fetch the Treasures

    最短路 神题一道…… //CF 311C #include<queue> #include<cstdio> #include<cstdlib> #include&l ...

  9. 引擎设计跟踪(九.14.2i) Android GLES 3.0 完善

    最近把渲染设备对应的GLES的API填上了. 主要有IRenderDevice/IShader/ITexture/IGraphicsResourceManager/IIndexBuffer/IVert ...

  10. <string>和<string.h>的区别

    转自:http://blog.csdn.net/houjixin/article/details/8648969 在C++开发过程中经常会遇到两个比较容易混淆的头文件引用#include<str ...