最短路径BellmanFord , Dijsktra
最短路径算法也是常用的图算法,在网上看到了一份c的代码,写的很清楚,今天有空给写成java的了,就当练手了。另,算法导论362页详细介绍了Bellman-Ford算法,本来打算再写个Dijsktra算法的,可是今天比较赖,就写这一个算法吧。
package path;
import java.util.HashSet; public class BellmanFord { private int MAX = Integer.MAX_VALUE;
private int N = 1024;
//顶点数 , 边数 , 起点
private int nodenum, edgenum, original;
//图的边
private Edge [] edge = new Edge[N];
//保存距离
private double [] dis = new double[N];
private int [] pre = new int[N];
/**
* @function
* @return
*/
boolean calculate()
{
for(int i = 1; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? 0 : MAX);
for(int i = 1; i <= nodenum - 1; ++i)
for(int j = 1; j <= edgenum; ++j)
//松弛
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost){
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
pre[edge[j].v] = edge[j].u;
}
boolean flag = true;
//判断是否含有负权回路
for(int i = 1; i <= edgenum; ++i)
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost){
flag = false;
break;
}
return flag;
} void print_path(int root) //打印最短路的路径(反向)
{
while(root != pre[root]){ //前驱
System.out.print(root + "-->");
root = pre[root];
}
if(root == pre[root])
System.out.print(root + "\n");
} public boolean init(Edge [] edges){
try{
nodenum = edgenum = 0;
HashSet<Integer> vSet = new HashSet<Integer>();
for(int i = 1 ; i < edges.length ; ++i){
edgenum++;
edge[i] = edges[i];
vSet.add(edges[i].u);
vSet.add(edges[i].v);
}
nodenum = vSet.size();
return true;
}catch(Exception e){
e.printStackTrace();
return false;
}
}
private void calcShortestPath(int original){
this.original = original;
pre[original] = original;
if(calculate())
for(int i = 1; i <= nodenum; ++i){ //每个点最短路
System.out.print(dis[i] + "\n");
System.out.print("Path:");
print_path(i);
}
else
System.out.println("have negative circle\n"); }
public static void main(String [] args)
{
BellmanFord bellman = new BellmanFord(); Edge [] edges = new Edge [7];
edges[1] = new Edge(1 , 2 , 2);
edges[2] = new Edge(1 , 3 , 5);
edges[3] = new Edge(4 , 1 , 10);
edges[4] = new Edge(2 , 4 , 4);
edges[5] = new Edge(4 , 2 , 4);
edges[6] = new Edge(3 , 4 , 2); bellman.init(edges);
bellman.calcShortestPath(1);
} } class Edge //边
{ // u为边的前驱结点,v为后继结点(暂且用前驱、后继来说)
int u, v;
//边的权重
double cost;
public Edge(int u , int v , double cost){
this.u = u;
this.v = v;
this.cost = cost;
}
}
最短路径BellmanFord , Dijsktra的更多相关文章
- 最短路径——Bellman-Ford算法以及SPFA算法
说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...
- 单源最短路径—Bellman-Ford和Dijkstra算法
Bellman-Ford算法:通过对边进行松弛操作来渐近地降低从源结点s到每个结点v的最短路径的估计值v.d,直到该估计值与实际的最短路径权重相同时为止.该算法主要是基于下面的定理: 设G=(V,E) ...
- 最短路径——Bellman-Ford算法
一.相关定义 最短路径:求源点到某特定点的最短距离 特点:Bellman-Ford算法主要是针对有负权值的图,来判断该图中是否有负权回路或者存在最短路径的点 局限性:算法效率不高,不如SPFA算法 时 ...
- 求最短路径(Bellman-Ford算法与Dijkstra算法)
前言 Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的.这时候,就需要使用其他的算法来求 ...
- 单源最短路径---Bellman-Ford算法
传送门: Dijkstra Bellman-Ford SPFA Floyd 1.Dijkstra算法的局限性 像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = ...
- matlab练习程序(单源最短路径Bellman-Ford)
该算法可以用来解决一般(边的权值为负)的单源最短路径问题,而dijkstra只能解决权值非负的情况. 此算法使用松弛技术,对每一个顶点,逐步减少源到该顶点的路径的估计值,直到达到最短的路径. 算法运算 ...
- 最短路径 bellman-ford
初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0 迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离:(运行|v ...
- 最短路径之Dijsktra算法(python)
定义: 起始位置:A 终止位置:F 持久集合:permanent = set() 暂时集合:temporary = set() 首先将起始位置A加入永久集合,并将A的距离设为0, 此时遍历A的邻接节点 ...
- 四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)
什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPF ...
随机推荐
- Mac系统如何配置adb
在使用mac进行android开发之前,我们一般会安装android studio 或者 eclipse,无论哪一款开发软件,都少不了安装adb(Android Debug Bridge).adb(A ...
- javascript与DOM -- 深入理解javascript
/* 一.文档对象模型Document Object Model DOM(Document Object Model,文档对象模型)是一个通过和JavaScript进行内容交互的API */ /* 注 ...
- UVALive - 6952 Cent Savings dp
题目链接: http://acm.hust.edu.cn/vjudge/problem/116998 Cent Savings Time Limit: 3000MS 问题描述 To host a re ...
- JRebel: ERROR Could not define reloadable class 'com.sun.proxy.$Proxy118': java.lang.OutOfMemoryError: PermGen space
MyEclipse由于配置了JRebel,所以是它报错,不过根本问题还是:java.lang.OutOfMemoryError: PermGen space 现在按照经验调整内存大小. 在MyEcli ...
- 【BZOJ】【1011】【HNOI2008】遥远的行星
神奇的思路题QAQ 玛雅看到这题我就醉了,什么玩意……5%的误差?果断膜拜@ydc神犇的题解: 就是因为不清楚如何应用那个答案误差不超过5%啦. 从没见过这么诡异的题一下就懵了,问到了方法之后都还半信 ...
- 打印xls注意事项
1.ctrl+p 2.打印机选择 就绪的,不是脱机的,不要只看打印机的名字. 3.打印名单信息的话 要用横向打印 4.从数据库里导出来的数据xls可能在excel里没显示完全,比如学号.身份证号等(e ...
- [工作积累] Software keyboard not shown on Activity.onCreate
protected void onCreate (Bundle savedInstanceState) { super.onCreate(savedInstanceState); this.setCo ...
- PHP 路径或URL操作
echo 'documentroot:'.$_SERVER['DOCUMENT_ROOT'].'<br>'; //根目录,在apache的配置文件里定义:httpd.conf 比如:Doc ...
- AngularJs学习笔记--bootstrap
AngularJs学习笔记系列第一篇,希望我可以坚持写下去.本文内容主要来自 http://docs.angularjs.org/guide/ 文档的内容,但也加入些许自己的理解与尝试结果. 一.总括 ...
- smarty模板技术
一.什么是smarty?smarty是一个使用php写出来的模板php模板引擎,它提供了逻辑与外在内容的分离,简单的讲,目的就是要使用php程序员同美工分离,使用的程序员改变程序的逻辑内容不会影响到美 ...