kmeans算法的python实现:

参考与样本来源《Machine Learning in Action》

 #-*-coding:UTF-8-*-
'''
Created on 2015年8月19日
@author: Ayumi Phoenix
'''
import numpy as np def distL2(a,b):
""" 计算两个向量之间的L2距离 """
return np.sqrt(np.sum((a-b)**2)) class Kmeans():
def __init__(self, dataset,k):
self.dataset = dataset
self.k = k
self.m, self.n = dataset.shape def randcent(self):
""" 根据输入数据集获得随机生成一组簇质心 """
maxn = np.max(self.dataset, 0) # 获取每一维的最大值
minn = np.min(self.dataset, 0) # 获取每一维的最小值
centoroid = np.random.rand(self.k,self.n) * (maxn - minn) + minn # k x n
return centoroid def train(self, dist, iter = 1):
"""
# 1. 计算每个样本与所有簇心的最近匹配距离数组 m x 1:
# 计算某样本与所有簇心的距离,
# 找到最小距离所属的下标序号 0...k-1
# 2. 根据当前类标的分配,重新计算平均聚类中心
# 按照当前分配索引样本数据
# 迭代次数减一
# 3. 返回最终的质心与分配的序号
"""
centoroid = self.randcent()
while iter:
labels = np.zeros((self.m,), int)
for i in range(self.m):
d = [dist(self.dataset[i,:],centoroid[j])
for j in range(self.k)]
labels[i] = np.argmin(d)
for i in range(self.k):
x = self.dataset[labels==i]
centoroid[i] = np.mean(x, 0)
iter -= 1
return centoroid, labels

读取数据与测试函数:

 ef loadDataSet(filename):
dataMat = []
with open(filename) as f:
for line in f.readlines():
curline = line.strip().split('\t')
fltline = map(np.float, curline)
dataMat.append(fltline)
return dataMat if __name__=="__main__":
pass
datMat = np.array(loadDataSet('testSet.txt'))
km = Kmeans(datMat,4)
centoroid, labels = km.train(distL2, iter=20) # 根据当前质心显示样本分布
import matplotlib.pylab as pl
pl.figure()
c = ['ro','go','bo','yo','co','ko','wo','mo']
for i in range(datMat.shape[0]):
pl.plot(datMat[i][0],datMat[i][1],c[labels[i]])
for cen in centoroid:
pl.plot(cen[0],cen[1],'mo')
pl.show()

结果:

python ML 笔记:Kmeans的更多相关文章

  1. Python机器学习笔记:K-Means算法,DBSCAN算法

    K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...

  2. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  3. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  4. python机器学习笔记:EM算法

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于E ...

  5. Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...

  6. Web Scraping with Python读书笔记及思考

    Web Scraping with Python读书笔记 标签(空格分隔): web scraping ,python 做数据抓取一定一定要明确:抓取\解析数据不是目的,目的是对数据的利用 一般的数据 ...

  7. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  8. VS2013中Python学习笔记[Django Web的第一个网页]

    前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...

  9. python学习笔记之module && package

    个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...

随机推荐

  1. ExtJs

    ExtJS是一种主要用于创建前端用户界面,是一个与后台技术无关的前端ajax框架.      概念 1.ExtJS可以用来开发RIA也即富客户端的AJAX应用,是一个用javascript写的,主要用 ...

  2. CentOS 6.5搭建PPTP VPN服务器

    VPN是虚拟专用网络(Virtual Private Network)的缩写,VPN有多种分类方式,包括PPTP.L2TP.IPSec等,本文配置的VPN服务器是采用PPTP协议的,PPTP是在PPP ...

  3. javascript实现json页面分页

    下午有个朋友问json 数据怎么分页 就捣鼓了一个东东出来 下面直接代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitio ...

  4. microstrip(微带线)、stripline(带状线) 指什么?

    带状线:走在内层(stripline/double stripline),埋在PCB内部的带状走线,如下图所示 蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状 ...

  5. Hibernate关联映射之延迟加载

    什么事延迟加载?   当真正需要数据时才执行SQL语句,其本意是减少不必要的性能开销! 之前提到过一个延迟加载的例子: load();结果集不能为空 当真正去打印对象属性时,sql语句才执行! hib ...

  6. Oracle在归档模式下恢复

    =============== 数据库的完全恢复 =============== 在归档模式下数据库完全恢复时,数据库所经过的状态如下: 1.利用备份修复(Restores)损坏或丢失的数据文件,即将 ...

  7. asp获取虚拟目录根路径

    <% TempArray = Array("account_book","admin","ajaxFile","catalo ...

  8. 判断json数据是否为空

    json数据是没有length这个属性的 ,所以不能直接用.length()方法 我们可以先遍历,然后根据遍历次数求长度 1.在IE上这样遍历json:(js代码) var jsonLength = ...

  9. GIT ON WINDOWS

    https://help.github.com/articles/generating-an-ssh-key/

  10. Ajax全解

    jQuery确实是一个挺好的轻量级的JS框架,能帮助我们快速的开发JS应用,并在一定程度上改变了我们写JavaScript代码的习惯. 我们先来看一些简单的方法,这些方法都是对jQuery.ajax( ...