题意

给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和。

分析

首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组成的三角形的面积之和可以用前缀和和单调性来求出(因为有正负面积之分,而正负具有单调性)。

题解

所以我们维护枚举第一个点然后将其它点按照关于这个点为原点的极角排序。然后从左往右扫,计算第\(i\)个点和前\(i-1\)个点的正向面积之和和负向面积之和(叉积来求)。

极角排序的\(O(n^2logn)\)常数超大(doge).

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int getint() {
int x=0, c=getchar();
for(; c<48||c>57; c=getchar());
for(; c>47&&c<58; x=x*10+c-48, c=getchar());
return x;
}
const int N=3005;
struct ip {
int x, y;
double ang;
void init(int _x, int _y) {
x=_x;
y=_y;
ang=atan2(y, x);
}
void read() {
x=getint();
y=getint();
}
}a[N], p[N];
bool cmp(const ip &a, const ip &b) {
return a.ang<b.ang;
}
int sumx[N], sumy[N];
int main() {
int n=getint();
for(int i=1; i<=n; ++i) {
p[i].read();
}
ll ans=0;
for(int i=1; i<=n; ++i) {
int tot=0;
for(int j=1; j<=n; ++j) {
if(p[i].x!=p[j].x || p[i].y!=p[j].y) {
a[++tot].init(p[j].x-p[i].x, p[j].y-p[i].y);
}
}
sort(a+1, a+1+tot, cmp);
int pos=1;
for(int j=1; j<=tot; ++j) {
for(; pos<j && a[j].x*a[pos].y>a[j].y*a[pos].x; ++pos);
ans+=(ll)a[j].y*(sumx[j-1]-sumx[pos-1])-(ll)a[j].x*(sumy[j-1]-sumy[pos-1]);
ans+=(ll)a[j].x*sumy[pos-1]-(ll)a[j].y*sumx[pos-1];
sumx[j]=sumx[j-1]+a[j].x;
sumy[j]=sumy[j-1]+a[j].y;
}
}
ans/=3;
ans*=10;
ans/=2;
printf("%lld.%lld\n", ans/10, ans%10);
return 0;
}

【BZOJ】1132: [POI2008]Tro的更多相关文章

  1. 【BZOJ】1124: [POI2008]枪战Maf

    题意 \(n(n < 1000000)\)个人,每个人\(i\)指向一个人\(p_i\),如果轮到\(i\)了且他没死,则他会将\(p_i\)打死.求一种顺序,问死的人最少和最多的数目. 分析 ...

  2. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  3. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  4. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  5. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  6. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  7. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  8. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

  9. 【BZOJ】【2738】&【Tsinsen】【A1333】矩阵乘法

    整体二分+树状数组 过了[BZOJ][2527][POI2011]Meteors以后这题就没那么难啦~ 关键是[从小到大]依次插入数字,然后整体二分每个查询的第k大是在第几次插入中被插入的……嗯大概就 ...

随机推荐

  1. c# 扩展方法奇思妙用基础篇八:Distinct 扩展(转载)

    转载地址:http://www.cnblogs.com/ldp615/archive/2011/08/01/distinct-entension.html 刚看了篇文章 <Linq的Distin ...

  2. HTML - DOCTYPE

    HTML - DOCTYPE HTML 5 doctype <!DOCTYPE html> HTML4.01 Based on SGML. so the browser need the ...

  3. Linux重置root密码步骤

    1.开机时任意按一个方向键,进入界面,选择linux系统,按e键进入2.然后用上下键选择kerner(内核)那一行,按e键进入编辑界面,编辑界面最后一行显示如下:(grub edit> kern ...

  4. android 入门-布局

    android:gravity 针对本view 的位置. android:layout_gravity 本view相对于父布局view的位置. android:layout_alignParentRi ...

  5. thinkphp计划任务使用cronRun

    thinkphp计划任务使用cronRun .先不管是是否是独立分组,必须在你项目名下的Conf文件夹内创建2个文件一个是tages.php 一个是 crons.php. 注意这两个文件名为think ...

  6. 提高WPF程序性能的几条建议

    这篇博客将介绍一些提高WPF程序的建议(水平有限,如果建议有误,请指正.) 1. 加快WPF程序的启动速度: (1).减少需要显示的元素数量,去除不需要或者冗余的XAML元素代码. (2).使用UI虚 ...

  7. mysql_multi启动数据库

    1.初始化数据库 在$mysql_base目录下,新增加存放data的文件夹,用mysql_install_db命令执行初始化 [root@ora11g scripts]# ./mysql_insta ...

  8. Linux学习笔记(11)软件包管理

    Linux中的软件包分为源码包(脚本安装包)及二进制包(RPM包.系统默认包).其中源码包的优点是: 1)源码包是开源的,如果有足够的能力,可以修改源代码: 2)可自由选择所需的功能: 3)源码包需编 ...

  9. .htaccess是什么?.htaccess几个简单应用

    .htaccess是什么? .htaccess叫分布式配置文件,它提供了针对目录改变配置的方法——在一个特定的文档目录中放置一个包含一个或多个指令的文件, 以作用于此目录及其所有子目录.并且子目录中的 ...

  10. Linux使用jstat命令查看jvm的GC情况

    Linux使用jstat命令查看jvm的GC情况 http://www.open-open.com/lib/view/open1390916852007.html http://www.aiuxian ...