最近在公司内部的技术协会论坛里闲逛的时候,无意中发现了一篇手淘前端大牛岑安两年前写的博文,讲述了canvas的2d贴图技术。看到后觉得相当神奇。于是就自己实现了一下。不过岑安前辈的那篇博文也只是大概讲述了一下实现思路,整个逻辑还是自己慢慢摸索出来的,过程还是挺心酸的,所以在此记录一下并且分享一下,让跟我一样喜欢canvas的人有所收获吧。

  废话不说,先把demo贴出来,好歹让大伙看看我们要实现怎样的效果:

  第一个demo: 图像拉扯变形demo_1

  第二个demo: 图像3d变形demo_2

  看完demo,是否觉得挺好玩的?

  如果觉得好玩,那就继续看下去吧,接下来我将逐步分析整个实现逻辑。主要讲的就是第一个demo的实现逻辑,因为第二个就是在第一个的基础上实现的,只要理解了第一个的原理,第二个就变得很简单了。

  第一个demo中,实现了对图像的拉扯,涉及到这种变形的,首先想到的就是transform,没错,就是canvas的2d绘图API中的transform啦。transform方法中传入的abcdef六个值就是变换矩阵的参数。也就是说,我们可以通过修改这六个值来实现对图片的变形操作。

  transform() 允许您缩放、旋转、移动并倾斜当前的环境。如果对transform不是很了解的,可以看这篇博文:http://yehao.diandian.com/post/2012-12-30/40046242001    里面讲的还是很详细的。

  

  了解了transform之后,你会发现,transform能做的,好像就只有缩放、旋转、移动、倾斜这几个功能。但是demo1中可以拉扯成各种形状,感觉不像是用这几个就能实现的。但是其实,还真就是用这几个变换实现的。

  demo1贴图右侧有个数值选择,当选择1,并且选择显示方框的时候,我们看到是这样一个画面:

  

  没错,这个是什么意思呢,说明这张图片其实分成了两块,左上角的三角形以及右下角的三角形,我们拖动一下图片,再看一下效果:

  

  为了方便理解,我加了辅助线,画了辅助线后,就变得很简单了,相当于分成了两块,上面正常的图片,一块是变成了由红色圈起来的,另一块则是变成了由黑色圈起来的,当用画笔补全后,两个三角形都其实是一个平行四边形,而从矩形变成平行四边形,transform就能做了,当变成我们需要的形状的时候,再通过canvas的clip方法,只截取一半的三角形,把两块三角形合并起来。就有了拉扯效果了。

  而为了让拉扯效果更真实,就自然就需要使用更多的三角区域,当我把矩形分成20*20个小矩形,也就是20*20*2个三角形的时候,当鼠标拉扯时就出现了以下效果:

  

  以上,就是demo1的整个理论逻辑。

  接下来就讲代码该如何实现:

  首先是图片的变形效果,也就是用transform,要传入矩阵参数,起初我是用向量来做的,但是做到后面发现向量做起来会有好多其他问题。比如:图片拉扯过度的时候,图片翻转就出问题了,等等。。。

  所以最后,还是选择了用代数法来实现,也就是要解三元一次方程!!!!

  为啥说是三元一次方程呢?因为按照transform的矩阵运算的规则

                |a , b , 0|

  [X,Y,1] = [x , y , 1] * |c , d , 0|

            |e , f , 1|

  解出来就是这样:X = ax + cy +e  和  Y = bx + dy + f  , 也就是,新的坐标的XY值就等于旧的坐标的xy值进行一些运算后可以得到。

  相对的,也就是说,只要我们知道了平行四边形三个顶点变换前后的坐标值,我们就可以算出abcdef六个矩阵参数,然后我们先用transform改变绘制环境,再把图片绘制到平行四边形变换前的位置,就可以绘制出相应的倾斜效果了。

  所以,首先我们要封装出一个解三元一次方程以及获取矩阵参数的方法:

  先是解三元一次方程的方法,具体原理我就不讲了,百度一下就知道了,或者有琢磨精神的可以自己亲自拿笔算一下:

/**
* 解三元一次方程,需要传入三组方程参数
* @param arr1 第一组参数
* @param arr2 第二组参数
* @param arr3 第三组参数
* @returns {{x: number, y: number, z: number}}
*/
function equation(arr1 , arr2 , arr3){
var a1 = +arr1[0];
var b1 = +arr1[1];
var c1 = +arr1[2];
var d1 = +arr1[3]; var a2 = +arr2[0];
var b2 = +arr2[1];
var c2 = +arr2[2];
var d2 = +arr2[3]; var a3 = +arr3[0];
var b3 = +arr3[1];
var c3 = +arr3[2];
var d3 = +arr3[3]; //分离计算单元
var m1 = c1 - (b1 * c2 / b2);
var m2 = c2 - (b2 * c3 / b3);
var m3 = d2 - (b2 * d3 / b3);
var m4 = a2 - (b2 * a3 / b3);
var m5 = d1 - (b1 * d2 / b2);
var m6 = a1 - (b1 * a2 / b2); //计算xyz
var x = ((m1 / m2) * m3 - m5)/((m1 / m2) * m4 - m6);
var z = (m3 - m4 * x) / m2;
var y = (d1 - a1 * x - c1 * z) / b1; return {
x : x,
y : y,
z : z
}
}

  然后就是获取矩阵,其实就是将各个参数整理一下,传入解方程的方法中,进行处理: 

/**
* 根据变化前后的点坐标,计算矩阵
* @param arg_1 变化前坐标1
* @param _arg_1 变化后坐标1
* @param arg_2 变化前坐标2
* @param _arg_2 变化后坐标2
* @param arg_3 变化前坐标3
* @param _arg_3 变化后坐标3
* @returns {{a: number, b: number, c: number, d: number, e: number, f: number}}
*/
function getMatrix(arg_1 , _arg_1 , arg_2 , _arg_2 , arg_3 , _arg_3){
//传入x值解第一个方程 即 X = ax + cy + e 求ace
//传入的四个参数,对应三元一次方程:ax+by+cz=d的四个参数:a、b、c、d,跟矩阵方程对比c为1
var arr1 = [arg_1.x , arg_1.y , 1 , _arg_1.x];
var arr2 = [arg_2.x , arg_2.y , 1 , _arg_2.x];
var arr3 = [arg_3.x , arg_3.y , 1 , _arg_3.x]; var result = equation(arr1 , arr2 , arr3); //传入y值解第二个方程 即 Y = bx + dy + f 求 bdf
arr1[3] = _arg_1.y;
arr2[3] = _arg_2.y;
arr3[3] = _arg_3.y; var result2 = equation(arr1 , arr2 , arr3); //获得a、c、e
var a = result.x;
var c = result.y;
var e = result.z; //获得b、d、f
var b = result2.x;
var d = result2.y;
var f = result2.z; return {
a : a,
b : b,
c : c,
d : d,
e : e,
f : f
};
}

  计算完毕,就可以获取到六个矩阵参数了。

  这两个计算看似简单,但是一不小心就容易出错,楼主之前做的时候就一直出错,一直不知道原因在哪,最后手动把三元一次方程解了一遍,才发现是某个参数错了。所以楼主把这两个计算封装了一下,以便以后再利用:

  github地址:https://github.com/whxaxes/wheels/tree/master/matrix   有兴趣或者有需要的可以一用

  回归正题,到了现在,我们就可以获取到所有的矩阵参数了,接下来要解决的问题,就是如何把任意四个点连线形成的四边形分成N份的逻辑了(注意:是任意四个点,因为拉升之后,四个点形成的坐标就不是矩形了)。这个就可以用向量来做了,用向量的话,计算量会小很多,对性能的提升也是很有帮助。

  怎么实现呢,画个图就清晰了:

  

  我们只需要获取到AD向量,以及BC向量,把两个向量N等分,然后用个循环,在每一等分上获取AB方向的向量,然后再进行N等分,再计算,就可以获取到所有的点了。因为用的是向量,所以我们完全不用考虑角度的问题,无论四边形的形状如何,只要我们有四个点的坐标,就可以计算出里面的所有点坐标。代码如下:

/**
* 将abcd四边形分割成n的n次方份,获取n等分后的所有点坐标
* @param n 多少等分
* @param a a点坐标
* @param b b点坐标
* @param c c点坐标
* @param d d点坐标
* @returns {Array}
*/
function rectsplit(n , a , b , c , d){
//ad向量方向n等分
var ad_x = (d.x - a.x)/n;
var ad_y = (d.y - a.y)/n;
//bc向量方向n等分
var bc_x = (c.x - b.x)/n;
var bc_y = (c.y - b.y)/n; var ndots = [];
var x1, y1, x2, y2, ab_x, ab_y; //左边点递增,右边点递增,获取每一次递增后的新的向量,继续n等分,从而获取所有点坐标
for(var i=0;i<=n;i++){
//获得ad向量n等分后的坐标
x1 = a.x + ad_x * i;
y1 = a.y + ad_y * i;
//获得bc向量n等分后的坐标
x2 = b.x + bc_x * i;
y2 = b.y + bc_y * i; for(var j=0;j<=n;j++){
//ab向量为:[x2 - x1 , y2 - y1],所以n等分后的增量为除于n
ab_x = (x2 - x1)/n;
ab_y = (y2 - y1)/n; ndots.push({
x: x1 + ab_x * j,
y: y1 + ab_y * j
})
}
} return ndots;
}

  计算完毕,并且把点绘制到各个坐标上的时候,拖动四个顶点,就出现了以下效果,无论我的四个顶点位置如何变幻,都能保证所有点的位置不会错。

  

  当这个也计算完毕,整个demo的制作就基本上完成了,然后就是进行图片的渲染了,接下来的逻辑就相当简单了,先是用上面的rectsplit方法把当前的四边形分成N份,并且获取所有坐标点,当然还需要直接获取初始四边形分成N份后的所有坐标点,不过这个是可以在刚开始的时候就初始化好,因为这个数值是不会变的,没必要重复计算。

  两组点坐标获取到,然后传入方法里计算矩阵,以及进行clip处理,再把图片绘制上去,整个渲染过程就完成了。

/**
* 画布渲染
*/
function render(){
ctx.clearRect(0,0,canvas.width,canvas.height); var ndots = rectsplit(count, dots[0], dots[1], dots[2], dots[3]); ndots.forEach(function(d , i){
//获取四边形的四个点
var dot1 = ndots[i];
var dot2 = ndots[i + 1];
var dot3 = ndots[i + count + 2];
var dot4 = ndots[i + count + 1]; //获取初始四边形的四个点
var idot1 = idots[i];
var idot2 = idots[i + 1];
var idot3 = idots[i + count + 2];
var idot4 = idots[i + count + 1]; if (dot2 && dot3 && i%(count+1)<count){
//绘制三角形的下半部分
renderImage(idot3, dot3, idot2, dot2, idot4, dot4); //绘制三角形的上半部分
renderImage(idot1, dot1, idot2, dot2, idot4, dot4);
} if(hasDot){
ctx.save();
ctx.fillStyle = "red";
ctx.fillRect(d.x-1 , d.y-1 , 2 , 2);
ctx.save();
}
});
} /**
* 计算矩阵,同时渲染图片
* @param arg_1
* @param _arg_1
* @param arg_2
* @param _arg_2
* @param arg_3
* @param _arg_3
*/
function renderImage(arg_1 , _arg_1 , arg_2 , _arg_2 , arg_3 , _arg_3){
ctx.save();
//根据变换后的坐标创建剪切区域
ctx.beginPath();
ctx.moveTo(_arg_1.x, _arg_1.y);
ctx.lineTo(_arg_2.x, _arg_2.y);
ctx.lineTo(_arg_3.x, _arg_3.y);
ctx.closePath();
if(hasRect){
ctx.lineWidth = 2;
ctx.strokeStyle = "red";
ctx.stroke();
}
ctx.clip(); if(hasPic){
//传入变换前后的点坐标,计算变换矩阵
var result = matrix.getMatrix.apply(this , arguments); //变形
ctx.transform(result.a , result.b , result.c , result.d , result.e , result.f); //绘制图片
ctx.drawImage(img , idots[0].x , idots[0].y , img.width , img.height);
} ctx.restore();
}

  

  至此,demo1的整个理论原理以及代码逻辑都分析完毕,下面贴出该项目的github地址:

  https://github.com/whxaxes/canvas-test/tree/gh-pages/src/Funny-demo/transform  

  

  当demo1做出来的时候,demo2也就很简单了,因为,只要我们知道四边形的各个点变换前后的坐标值,我们就可以让图片变形成任何我们想要的样子。

  而上面的demo2就是在demo1的基础上,加入了z轴的影响,x,y轴都仅仅是平面上的,当加入了z轴以后,再将z轴的值映射到x,y轴上来,然后再进行图片变换,就有了demo2的效果。demo2的源码也在上面那个github地址上,里面的demo1.js就是demo1的,demo2.js就是demo2的逻辑。

  

  至此,整个过程都讲述完了。感谢一阅。

  

canvas 2d 贴图技术实践的更多相关文章

  1. 腾讯技术分享:GIF动图技术详解及手机QQ动态表情压缩技术实践

    本文来自腾讯前端开发工程师“ wendygogogo”的技术分享,作者自评:“在Web前端摸爬滚打的码农一枚,对技术充满热情的菜鸟,致力为手Q的建设添砖加瓦.” 1.GIF格式的历史 GIF ( Gr ...

  2. 赠书:HTML5 Canvas 2d 编程必读的两本经典

    赠书:HTML5 Canvas 2d 编程必读的两本经典 这两年多一直在和HTML5 Canvas 打交道,也带领团队开发了世界首款基于HTML5 Canvas 的演示文档工具---AxeSlide( ...

  3. 用canvas绘制折线图

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. 使用Canvas绘制背景图

    原文  http://www.imququ.com/post/use-canvas-as-background-image.html 最近iCloud Web的Beta版换了UI,整体风格变得和iOS ...

  5. Atitit 开发2d游戏的技术选型attilax总结

    Atitit 开发2d游戏的技术选型attilax总结 1.1. 跨平台跨平台:一定要使用跨平台的gui技术,目前最好的就是h5(canvas,webgl,dom) +js了..1 1.2. 游戏前后 ...

  6. fir.im 持续集成技术实践

    互联网时代,人人都在追求产品的快速响应.快速迭代和快速验证.不论是创业团队还是大中型企业,都在探索属于自己的敏捷开发.持续交付之道.fir.im 团队也在全面实施敏捷,并推出新持续集成服务 - flo ...

  7. iBatis.net技术实践

    随着大数据技术的兴起和快速发展,人们更多的开始关注HDFS.HBase.Hive等技术.但是谈到强一致性,我们又不得不回归现实,只能继续沿用RDBMS存储强一致性的数据.我们日常接触到的绝大多数的应用 ...

  8. 让互联网更快:新一代QUIC协议在腾讯的技术实践分享

    本文来自腾讯资深研发工程师罗成在InfoQ的技术分享. 1.前言 如果:你的 App,在不需要任何修改的情况下就能提升 15% 以上的访问速度,特别是弱网络的时候能够提升 20% 以上的访问速度. 如 ...

  9. 【公开课】【阿里在线技术峰会】魏鹏:基于Java容器的多应用部署技术实践

    对于公开课,可能目前用不上这些,但是往往能在以后想解决方案的时候帮助到我.以下是阿里对公开课的整理 摘要: 在首届阿里巴巴在线峰会上,阿里巴巴中间件技术部专家魏鹏为大家带来了题为<基于Java容 ...

随机推荐

  1. java多线程学习

    在java中要想实现多线程,有两种手段,一种是继续Thread类,另外一种是实现Runable接口. 一.扩展java.lang.Thread类 package com.multithread.lea ...

  2. c# UpdateLayeredWindow异形窗口

    #region UpdateLayeredWindow #region 重写窗体的 CreateParams 属性 protected override CreateParams CreatePara ...

  3. Java的SPI机制与简单的示例

    一.SPI机制 这里先说下SPI的一个概念,SPI英文为Service Provider Interface单从字面可以理解为Service提供者接口,正如从SPI的名字去理解SPI就是Service ...

  4. iOS 判断内容是否是中文,两种实现

    用category实现 新建类别文件,代码 .h文件 #import <Foundation/Foundation.h> @interface NSString (Valid) - (BO ...

  5. Makefile变量

    自定义变量 = 是最基本的赋值,会把整个makefile展开之后再决定是多少 x=foo y=$(x)bar #y是asdbar,不是foobar x=asd := 是覆盖之前的值,和=不同,和赋值的 ...

  6. 十一、Android学习第十天——项目开始(转)

    (转自:http://wenku.baidu.com/view/af39b3164431b90d6c85c72f.html) 十一.Android学习第十天——项目开始 Android知识点的学习告一 ...

  7. node.js表单——formidable

    node处理表单请求,需要用到formidable包.安装formidable包的命令如下: npm install formidable 安装package的路径分为两种,一种是本地目录,一种是全局 ...

  8. var 0bj = []声明报错的小问题

    闲来无事,找了份javascript的习题来作作,结果第一题的答案就难住了,附原题: Javascript中, 以下哪条语句一定会产生运行错误?      答案(  B   ) A.var _变量=N ...

  9. MMORGP大型游戏设计与开发(客户端架构 part1 of vgui)

    作为客户端的重要装饰,UI扮演着极为重要的角色,是客户端中核心的组成.vgui(微GUI)中,提供了核心的接口封装,实现了客户端中常见的界面操作,并结合lua脚本,使得控制界面更加的方便. 构架 总结 ...

  10. 老话题:自己编写只截窗口客户区的截屏软件(VB2010)

    现在能实现截屏的软件很多,就不一一列举了,连WIN7都自带截屏软件,甚至OFFICE2010开始都有截屏的功能. 截屏软件虽多,无外乎三种截屏方式:全屏截图.窗口截图.自定义矩形截图. 其中,窗口截图 ...