题目链接: 传送门

青蛙的约会

Time Limit: 1000MS     Memory Limit: 65536K

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

思路

设经过t步后两青蛙相遇,则必满足以下等式: (x+mt)-(y+nt)=k*L(k=0,1,2....) 整理后得: (n-m)t+kL=x-y 满足欧几里德方程。

ax + by = c 的整数解。

  • 1、先计算gcd(a,b),若c不能被gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以gcd(a,b),得到新的不定方程 a' * x + b' * y = c' ,此时gcd(a',b')=1;
  • 2、利用欧几里德算法求出方程 a' * x + b' * y = 1 的一组整数解x0,y0,则c' * x0,c' * y0是方程 a' * x + b' * y = c' 的一组整数解;
  • 3、根据数论中的相关定理,可得方程 a' * x + b' * y = c' 的所有整数解为: x = c' * x0 + b' * t y = c' * y0 - a' * t (t为整数).上面的解也就是 a * x + b * y = c 的全部整数解。
#include<iostream>
#include<algorithm>
#include<cstdio>

__int64 gcd(__int64 a,__int64 b)
{
    return b?gcd(b,a%b):a;
}

void extgcd(__int64 a,__int64 b,__int64 &x,__int64 &y)
{
    if (!b)
    {
        x = 1;
        y = 0;
    }
    else
    {
        extgcd(b,a%b,y,x);
        y -= x*(a/b);
    }
}

int main()
{
    //freopen("input.txt","r",stdin);
    //freopen("output.txt","w",stdout);
    __int64 x,y,m,n,L;
    while (~scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&L))
    {
        __int64 a,b,c,g,k1,k2,t;
        a = n-m;
        b = L;
        c = x - y;
        g = gcd(a,b);
        if (c % g)
        {
            printf("Impossible\n");
        }
        else
        {
            a /= g;
            b /= g;
            c /= g;
            extgcd(a,b,k1,k2);
            t = -c*k1/b;
            k1 = c*k1+t*b; //注释
            if (k1 < 0)
            {
                k1 += b;
            }
            printf("%I64d\n",k1);
        }
    }
    return 0;
}

/*注 1:此时方程的所有解为:x=c*k1:+b*t,x的最小的可能值是0,令x=0可求出当x最小时的t的取值,但由于x=0是可能的最小取值,实际上可能x根本取不到0,
那么由计算机的取整除法可知:由 t=-c*k1/b算出的t,代回x=c*k1+b*t中,求出的x可能会小于0,此时令t=t+1,求出的x必大于0;如果代回后x仍是大于等于0的,
那么不需要再做修正。*/

POJ 1061青蛙的约会(拓展欧几里德算法)的更多相关文章

  1. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  2. POJ.1061 青蛙的约会 (拓展欧几里得)

    POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...

  3. poj 1061 青蛙的约会+拓展欧几里得+题解

    青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...

  4. POJ 1061 青蛙的约会 扩展欧几里德--解不定方程

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 81606   Accepted: 14116 Descripti ...

  5. poj 1061 青蛙的约会 扩展欧几里德

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K       Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们 ...

  6. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  7. POJ 1061 青蛙的约会【扩展欧几里德】

    设跳的次数为t 根据题意可得以下公式:(x+mt)%L=(y+nt)%L 变形得 (x+mt)-(y+nt)=kL (n-m)t+kL=x-y 令a=(n-m),b=L,c=x-y 得 at+bk=c ...

  8. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  9. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

随机推荐

  1. 我的Logo设计简史

    近日,日本东京奥运会会微因涉嫌抄袭而被弃用的新闻引起设计界的一翻热论.在此我想到自己的LOGO设计,虽说并一定不好看甚至自己看回来都觉得略丑,但 几乎没有过抄袭的念头.有句话说,不想当设计师的程序猿不 ...

  2. windows 下 redis for php 配置

    下载 redis,下载地址 https://github.com/dmajkic/redis/downloads,下载下来 zip 文件,解压,根据系统选择解压的文件夹(比如我的是 64bit). 我 ...

  3. AngularJS中实现无限级联动菜单

    多级联动菜单是常见的前端组件,比如省份-城市联动.高校-学院-专业联动等等.场景虽然常见,但仔细分析起来要实现一个通用的无限分级联动菜单却不一定像想象的那么简单.比如,我们需要考虑子菜单的加载是同步的 ...

  4. [NOIP摸你赛]Hzwer的陨石(带权并查集)

    题目描述: 经过不懈的努力,Hzwer召唤了很多陨石.已知Hzwer的地图上共有n个区域,且一开始的时候第i个陨石掉在了第i个区域.有电力喷射背包的ndsf很自豪,他认为搬陨石很容易,所以他将一些区域 ...

  5. [转]史上最全最强SpringMVC详细示例实战教程

    原文:http://www.cnblogs.com/sunniest/p/4555801.html?utm_source=tuicool&utm_medium=referral SpringM ...

  6. 【JavaEE企业应用实战学习记录】logFilter

    package sanglp.servlet; import javax.servlet.*; import javax.servlet.annotation.WebFilter; import ja ...

  7. PHP后台代码 及 iOS客户端--AF实现上传视频

    //视频转换为MP4 //转码操作... _hud.mode = MBProgressHUDModeIndeterminate; _hud.labelText = @"转码中..." ...

  8. SharePoint配置搜索服务和指定搜索范围

    转载:http://constforce.blog.163.com/blog/static/163881235201201211843334/ 一.配置SharePoint Foundation搜索 ...

  9. 【Alpha版本】冲刺阶段——Day 8

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...

  10. zabbix proxy 服务器 netstat 出现大量Time_Wait连接问题

    问题描述: 监控系统云网关监控几万个TCP port的存活情况, 最近发现有几个端口出现告警闪断情况,怀疑因为运行TCP检查的 zabbix proxy 服务器 tcp参数配置不合理. netstat ...