线段树 poj3225
U:把区间[l,r]覆盖成1
I:把[-∞,l)(r,∞]覆盖成0
D:把区间[l,r]覆盖成0
C:把[-∞,l)(r,∞]覆盖成0 , 且[l,r]区间0/1互换
S:[l,r]区间0/1互换
因为普通的线段树实际处理的并非真正的区间,而是一系列点,相当于处理一个向量。这个问题需要处理的是真正的区间,所以应该有一个主导思想就是,把区间点化!不知哪位大牛搞了一个倍增区间出来,实在佩服!对于待处理区间[a,b](暂时不考虑开闭),对其边界均乘2。若区间左开则对左界值+1,若区间右开,则对右界-1!
如:[2,3]会倍增为[4,6],[2,3)会倍增为[4,5],(2,3]会倍增为[5,6],(2,3)将倍增为[5,5],我们这时可以看到,对于普通线段树无法处理的线段如(x,x+1)将被点化为[2*x+1,2*x+1]!这个问题得到比较完美的解决
最后把查找出来的区间逆向倍增操作一下,就可以得到实际的区间以及起开闭情况!
#include<stdio.h>
#include<algorithm>
#include<string.h> using namespace std; #define MAXN1 65545<<1
#define MAXN 65535<<1 int x[MAXN<<],col[MAXN<<]; void FXOR(int a)
{
if(x[a]!=-)
x[a]^=;
else
col[a]^=;
}
void push_down(int a)
{
if(x[a]!=-)
{
x[a<<]=x[a<<|]=x[a];
col[a<<]=col[a<<|]=;
x[a]=-;
}
if(col[a])
{
FXOR(a<<);
FXOR(a<<|);
col[a]=;
}
} void update(char val,int l,int r,int a1,int b1,int a)
{
if(l>=a1&&b1>=r)
{
if(val=='U')
{
x[a]=;
col[a]=;
}
else if(val=='D')
{
x[a]=;
col[a]=;
}
else if(val=='S'||val=='C')
FXOR(a);
return ;
}
push_down(a);
int mid=(l+r)>>;
if(a1<=mid)
update(val,l,mid,a1,b1,a<<);
else if(val=='I'||val=='C')
x[a<<]=col[a<<]=;
if(b1>mid)
update(val,mid+,r,a1,b1,a<<|);
else if(val=='I'||val=='C')
x[a<<|]=col[a<<|]=;
}
bool vis[MAXN1];
void Query(int l,int r,int a)
{
if(x[a]==)
{
for(int i=l;i<=r;i++)
vis[i]=;
return ;
}
else if(x[a]==)
return ;
if(l==r)
return ;
push_down(a);
int mid=(l+r)>>;
Query(l,mid,a<<);
Query(mid+,r,a<<|);
}
int main()
{
x[]=col[]=;
char a,a1,a2,b;
int l,r;
while(scanf("%c %c%d,%d%c%c",&a,&a1,&l,&r,&a2,&b)!=EOF)
{
l<<=;
r<<=;
if(a1=='(')
l++;
if(a2==')')
r--;
if(l>r)
continue;
update(a,,MAXN,l,r,);
}
Query(,MAXN,);
int s=-,e;
bool flag=;
for(int i=;i<=MAXN;i++)
{
if(vis[i])
{
if(s==-)
s=i;
e=i;
}
else
{
if(s!=-)
{
if(flag)printf(" ");
printf("%c%d,%d%c",s&?'(':'[',s>>,(e+)>>,e&?')':']');
s=-;
flag=;
}
}
}
if(!flag)
printf("empty set"); return ;
}
线段树 poj3225的更多相关文章
- poj3225(线段树区间更新&hash)
题目链接: http://poj.org/problem?id=3225 题意: 初始给一个全局为 0~65536 的区间 s, 然后不断地对区间 s 进行 并, 交, 差, 相对差等运算, 输出最 ...
- [转载]完全版线段树 by notonlysuccess大牛
原文出处:http://www.notonlysuccess.com/ (好像现在这个博客已经挂掉了,在网上找到的全部都是转载) 今天在清北学堂听课,听到了一些很令人吃惊的消息.至于这消息具体是啥,等 ...
- 【转】线段树完全版~by NotOnlySuccess
线段树完全版 ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...
- 《完全版线段树》——notonlysuccess
转载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文 ...
- 【转】 线段树完全版 ~by NotOnlySuccess
载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章 ...
- 【转载】完全版线段树 by notonlysuccess大牛
原文出处:http://www.notonlysuccess.com/ 今晚上比赛就考到了 排兵布阵啊,难受. [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时 ...
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
随机推荐
- Xbox Live会员身份:银会员和金会员
推出Xbox360之后,微软重新设计了Xbox Live平台.新设计建立了两个等级的Xbox Live会员身份:银会员和金会员.
- HTML 学习笔记 CSS3 (背景)
CSS3对于background做了一些修改,最明显的一个就是采用设置多背景,不但添加了4个新属性,并且还对目前的属性进行了调整增强. 1.多个背景图片 在CSS3里面 你可以在一个标签元素里应用多个 ...
- 数据表格 - DataGrid - 列表显示
<%@ page contentType="text/html;charset=UTF-8" language="java" pageEncoding=& ...
- 安装 SQL SERVER 2008 必须使用 "角色管理工具" 错误 的 解决方案 (转)
刚在服务器(Win2008)上安装SqlServer2008的时候出现了这么一个报错——必须使用“角色管理工具”安装或配置Microsoft .NET Framework 3.5 SP1.一开始以为是 ...
- Linux wait函数详解
wait和waitpid出现的原因 SIGCHLD --当子进程退出的时候,内核会向父进程SIGCHLD信号,子进程的退出是个异步事件(子进程可以在父进程运行的任何时刻终止) --子进程退出时,内核将 ...
- PCL 库安装
参考资料: http://www.cnblogs.com/newpanderking/articles/4022322.html VS2010+PCL配置 PCL共有两种安装方式 安全安装版,个人配置 ...
- JBOSS只能本机localhost和127.0.0.1能访问的解决
一句话: %jboss_home%\bin>standalone.bat -Djboss.bind.address=0.0.0.0 也可以直接编辑standalone.xml,将里面所有127. ...
- ASP.NET Web API Help Pages using Swagger
Understanding the various methods of an API can be a challenge for a developer when building a consu ...
- Python面试题 —— 计算列表中出现最多次的字符
给你一个其中包含不同的英文字母和标点符号的文本,你要找到其中出现最多的字母,返回的字母必须是小写形式, 当检查最想要的字母时,不区分大小写,所以在你的搜索中 "A" == &quo ...
- 拿到阿里,网易游戏,腾讯,smartx的offer的过程
前言 从今年的3月14日阿里的电话面试开始,到现在4月16日在西安悦豪酒店进行的腾讯HR面到现在一个多月了,中间先后收到了阿里,网易游戏,腾讯和smartx的offer,今天早晨刚刚接到了腾讯HR的电 ...