[gym103055H]Grammy and HearthStone
题目即要求构造一个长为$2n$的序列$a_{i}$,满足$\forall 1\le i\le n$,$i$恰好出现两次,假设分别是$a_{x}=a_{y}=i(x<y)$,即要求$y-x=i$
(输出序列即对于所有$i$,依次输出其第一次出现的位置$x$即可)
考虑$S_{1}=\sum_{i=1}^{n}x$(定义与之前相同)和$S_{2}=\sum_{i=1}^{n}y$,满足$\begin{cases}S_{2}-S_{1}=\frac{n(n+1)}{2}\\S_{1}+S_{2}=n(2n+1)\end{cases}$,将两式相减即可解得$S_{1}=\frac{n(3n+1)}{4}\in Z$
因此,有解的必要条件即$n\equiv 0,1(mod\ 4)$
接下来,对$n$分类讨论,并构造对应$a_{i}$:
当$n=4k$,令$a_{i}$为以下序列即可——
$$
\{4k,4k-2,...,2\}\{4k-1\}\{2,4,...,4k\}\\\{2k-1\}\{4k-3,4k-5,...,2k+1\}\{2k-3,2k-5,...,3\}\\\{4k-1,2k-1\}\{3,5,...,2k-3\}\{1,1\}\{2k+1,...,4k-3\}
$$
(特别的,当$n=4$时前者构造不合法,可以令$a_{i}=\{1,1,3,4,2,3,2,4\}$)
当$n=4k+1$,令$a_{i}$为以下序列即可——
$$
\{4k+1\}\{4k-2,4k-4...,2\}\{4k\}\{2,4,...,4k-2\}\\\{2k+1,4k+1\}\{4k-1,4k-3,...,2k+3\}\{2k-1,2k-3,...,3\}\\\{4k,2k+1\}\{3,5,...,2k-1\}\{1,1\}\{2k+3,2k+5,...,4k-1\}
$$

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 int n,a[N<<1],ans[N];
5 void add(int x){
6 a[++a[0]]=x;
7 }
8 int main(){
9 scanf("%d",&n);
10 if ((n%4==2)||(n%4==3)){
11 printf("-1");
12 return 0;
13 }
14 if (n==4){
15 printf("1 5 3 4");
16 return 0;
17 }
18 if (n%4==0){
19 int k=n/4;
20 for(int i=4*k;i>=2;i-=2)add(i);
21 add(4*k-1);
22 for(int i=2;i<=4*k;i+=2)add(i);
23 add(2*k-1);
24 for(int i=4*k-3;i>=2*k+1;i-=2)add(i);
25 for(int i=2*k-3;i>=3;i-=2)add(i);
26 add(4*k-1),add(2*k-1);
27 for(int i=3;i<=2*k-3;i+=2)add(i);
28 add(1),add(1);
29 for(int i=2*k+1;i<=4*k-3;i+=2)add(i);
30 }
31 else{
32 int k=n/4;
33 add(4*k+1);
34 for(int i=4*k-2;i>=2;i-=2)add(i);
35 add(4*k);
36 for(int i=2;i<=4*k-2;i+=2)add(i);
37 add(2*k+1),add(4*k+1);
38 for(int i=4*k-1;i>=2*k+3;i-=2)add(i);
39 for(int i=2*k-1;i>=3;i-=2)add(i);
40 add(4*k),add(2*k+1);
41 for(int i=3;i<=2*k-1;i+=2)add(i);
42 add(1),add(1);
43 for(int i=2*k+3;i<=4*k-1;i+=2)add(i);
44 }
45 for(int i=1;i<=a[0];i++)
46 if (!ans[a[i]])ans[a[i]]=i;
47 for(int i=1;i<=n;i++)printf("%d ",ans[i]);
48 }
[gym103055H]Grammy and HearthStone的更多相关文章
- HDU 5816 Hearthstone
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem Descript ...
- HDU5816 Hearthstone(状压DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collec ...
- 多校7 HDU5816 Hearthstone 状压DP+全排列
多校7 HDU5816 Hearthstone 状压DP+全排列 题意:boss的PH为p,n张A牌,m张B牌.抽取一张牌,能胜利的概率是多少? 如果抽到的是A牌,当剩余牌的数目不少于2张,再从剩余牌 ...
- HDU 5816 Hearthstone (状压DP)
Hearthstone 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an onlin ...
- HDU5816 Hearthstone
Hearthstone Time Limit: 2000/ ...
- HDU 5816 Hearthstone 概率dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5816 Hearthstone Time Limit: 2000/1000 MS (Java/Othe ...
- hdu-5816 Hearthstone(状压dp+概率期望)
题目链接: Hearthstone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- Google Deepmind AI tries it hand at creating Hearthstone and Magic: The Gathering cards
http://www.techrepublic.com/article/google-deepmind-ai-tries-it-hand-at-creating-hearthstone-magic-t ...
- Programming a Hearthstone agent using Monte Carlo Tree Search(chapter one)
Markus Heikki AnderssonHåkon HelgesenHesselberg Master of Science in Computer Science Submission dat ...
随机推荐
- Dapr + .NET Core实战(十三)跨语言开发
因为基于Dapr的服务架构是不限语言的,我们来看看Dapr的跨语言开发.我们使用golang,python,.NET来实现跨语言的服务调用,拓扑如下 我们继续使用.NET 5的fontend和back ...
- Azure Devops实践(5)- 构建springboot项目打包docker镜像及容器化部署
使用Azure Devops构建java springboot项目,创建镜像并容器化部署 1.创建一个springboot项目,我用现有的项目 目录结构如下,使用provider项目 在根目录下添加D ...
- Mysql读写分离集群的搭建且与MyCat进行整合
1. 概述 老话说的好:不熟悉的东西不要不懂装懂,做人要坦诚,知道就是知道,不知道就是不知道. 言归正传,今天我们来聊聊 Mysql主从读写分离集群是如何搭建的,并且聊一下如何用 MyCat 去访问这 ...
- SQL SERVER数据库权限分配
1,新建 只能访问某一个表的只读用户. --添加只允许访问指定表的用户: exec sp_addlogin '用户名','密码','默认数据库名' ...
- 关于 Binomial Coefficient is Fun
题目传送门 Solution 应该这个做法不是很常见吧. 我们设 \(f_{i,j}\) 表示前面 \(i\) 个数,选出的数和为 \(j\) 的贡献之和.因为我们有以下式子: \[\sum_{i=a ...
- 题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set
题目传送门 题目大意 给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值. 思路 你发现如果 ...
- Bloom Filter算法
Bloom Filter算法详解 什么是布隆过滤器 布隆过滤器(Bloom Filter)是 1970 年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数 (下面详细说),实际上你也可 ...
- pagelayout在py中的引用不支持size_hint和pos_hint
from kivy.uix.pagelayout import PageLayout from kivy.uix.button import Button from kivy.app import A ...
- 服务器端的GPU使用
服务器端的GPU使用 查看GPU信息 查看nvidia GPU信息: # 输入指令 lspci | grep -i nvidia # 结果如下: # 04:00.0 3D controller: NV ...
- eureka服务端的高可用
eureka client的高可用这个很简单,只需要向eureka服务端上多注册几个实例即可,那么eureka server端如何实现高可用呢?其实eureka server 端也是可以做为一个客户端 ...