dp,用f[i]表示i划分的方案,直接枚举最后一个数是错误的,因为会导致c重复计数,然后正解十分神奇——
当i为奇数,那么分解中一定有1,因此f[i]=f[i-1]
当i为偶数若有1,同样转移到f[i-1];没有1,可以将所有因数除以2,即f[i]=f[i-1]+f[i/2],注意对1e9取模

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 1000000000
4 int n,f[1000005];
5 int main(){
6 scanf("%d",&n);
7 f[0]=1;
8 for(int i=1;i<=n;i++)
9 if (i&1)f[i]=f[i-1];
10 else f[i]=(f[i-1]+f[i/2])%mod;
11 printf("%d",f[n]);
12 }

[bzoj1677]求和的更多相关文章

  1. BZOJ1677: [Usaco2005 Jan]Sumsets 求和

    1677: [Usaco2005 Jan]Sumsets 求和 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 570  Solved: 310[Submi ...

  2. 【BZOJ1677】[Usaco2005 Jan]Sumsets 求和 递推

    ... #include <iostream> using namespace std; ]; int n,i; int main() { cin>>n; f[]=; ;i&l ...

  3. Java程序:从命令行接收多个数字,求和并输出结果

    一.设计思想:由于命令行接收的是字符串类型,因此应先将字符串类型转化为整型或其他字符型,然后利用for循环求和并输出结果 二.程序流程图: 三.源程序代码:   //王荣荣 2016/9/23     ...

  4. Java之递归求和的两张方法

    方法一: package com.smbea.demo; public class Student { private int sum = 0; /** * 递归求和 * @param num */ ...

  5. EXCEL中对1个单元格中多个数字求和

    如A1=3779.3759.3769.3781.3750,A2对A1中4个数字求和怎么求!请高手赐教! 方法一:在B1中输入公式=SUM(MID(A1,{1,6,11,16,21},4)*1) 方法二 ...

  6. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  7. 从sum()求和引发的思考

    sum()求和是一个非常简单的函数,以前我的写法是这样,我想大部分和我一样刚开始学习JS的同学写出来的也会是这样. function sum() { var total=null; for(var i ...

  8. //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和

    //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...

  9. Ajax中get请求和post请求

    我们在使用Ajax向服务器发送数据时,可以采用Get方式请求服务器,也可以使用Post方式请求服务器,那么什么时候该采用Get方式,什么时候该采用Post方式呢? Get请求和Post请求的区别: 1 ...

随机推荐

  1. 题解 [HAOI2017]方案数

    题目传送门 Solution 我们没有障碍的时候很好做,直接设 \(f_{i,j,k}\) 表示到 \((x,y,z)\) \(x\) 有 \(i\) 位为 \(1\),\(y\) 有 \(j\) 位 ...

  2. 2021.1.23--vj补题

    B - B CodeForces - 879B n people are standing in a line to play table tennis. At first, the first tw ...

  3. GIS应用|快速开发REST数据服务

    随着计算机的快速发展,GIS已经在各大领域得到应用,和我们的生活息息相关, 但是基于GIS几大厂商搭建服务,都会有一定的门槛,尤其是需要server,成本高,难度大,这里介绍一种在线GIS云平台,帮你 ...

  4. 项目优化之v-if

    前言: 在vue项目中,由于功能比较多,需要各种条件控制某个功能.某个标签.表格中的某一行是否显示等,需要使用大量的v-if来判断条件. 例如: <div v-if="isShow(a ...

  5. 【UE4】GAMES101 图形学作业4:贝塞尔曲线

    总览 Bézier 曲线是一种用于计算机图形学的参数曲线. 在本次作业中,你需要实现de Casteljau 算法来绘制由4 个控制点表示的Bézier 曲线(当你正确实现该算法时,你可以支持绘制由更 ...

  6. 大闸蟹的 O O 第三单元日子——中测与强测的惨烈修罗场

    第三单元是大闸蟹体验及其差的一单元,鬼知道从一开始的自信慢慢到最后的自暴自弃我都经历了什么,我已经感觉到分数与gpa与头发都在渐渐和我说再见了 JML基础梳理及工具链 JML(Java Modelin ...

  7. Noip模拟15 2021.7.14

    T1 夜莺与玫瑰 题目越发的变态起来... 这题刚开始看超级像仪仗队,好不容易码完欧拉函数后尝试×2后输出但不对!! 于是选择了跳过.... 正解居然是莫比乌斯函数....我也是醉了 预处理完就剩下$ ...

  8. PCB设计中新手和老手都适用的七个基本技巧和策略

    本文将讨论新手和老手都适用的七个基本(而且重要的)技巧和策略.只要在设计过程中对这些技巧多加注意,就能减少设计回炉次数.设计时间和总体诊断难点. 技巧一:注重研究制造方法和代工厂化学处理过程 在这个无 ...

  9. Nginx(三):Linux环境(Ubuntu)下Nginx的安装

    Nginx 是一位俄罗斯人 Igor Sysoev(伊戈尔·塞索斯夫)编写的一款高性能HTTP和反向代理服务器. Nginx 主要是有C编写的,安装Nginx需要GCC编译器(GNU Compiler ...

  10. AOP源码解析:AspectJAwareAdvisorAutoProxyCreator类的介绍

    AspectJAwareAdvisorAutoProxyCreator 的类图 上图中一些 类/接口 的介绍: AspectJAwareAdvisorAutoProxyCreator : 公开了Asp ...