考虑对于$n-1$个数$a_{i}$,函数$f(x)=\frac{\sum_{i=1}^{n-1}(x-a_{i})^{2}}{n-1}$的最小值恰在$x=\frac{\sum_{i=1}^{n-1}a_{i}}{n-1}$取到(根据二次函数显然),因此题意可以理解为任选实数$b$并最小化$\frac{\sum_{i=1}^{n-1}(b-a_{i})^{2}}{n-1}$(本来要求$b$为平均值)

可以暴力枚举$b$并将边权从$d$变为$(b-d)^{2}$求最小生成树,但由于$b$为实数,并不能直接枚举

(为了方便,以下约定两条边边权若相同,编号小的更小)

对于最小生成树而言,所选的边事实上仅取决于边的大小关系,考虑两条边$i$和$j$(其中$i<j$)满足$i$在$j$前面当且仅当$X\le \lfloor\frac{w_{i}+w_{j}}{2}\rfloor$,以此法即产生了$o(n^{4})$个区间,每一个区间内大小关系都相同

(每一段都是左端点为圆括号,右端点为中括号)

对于每一段,以$b$作为参数来表示边权,比较时使用区间内任意数字即可,最后即求一个二次函数区间(其实也可以忽略区间限制)最小值,即可做到$o(n^{6})$的复杂度,可以通过

(以下可能有一些口胡)

更进一步的,考虑每一次权值变化即将两条边优先级交换,且交换的两边优先级相邻(不妨假设为两边为$i$和$j$,其中交换前$i$优先级较大),此时不难证明——

如果修改最小生成树,则必然是$i$本来在最小生成树中被删除,$j$本来不在最小生成树中被加入(其余边不修改)

(证明考虑kruskal贪心的过程并分类讨论即可)

因此只需要判定能否替换即可,用按秩合并并查集维护,复杂度为$o(n^{4}\log n)$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 25
4 #define sqr(k) (k)*(k)
5 struct fun{
6 double a,b,c,val;
7 fun(){
8 a=b=c=val=0;
9 }
10 fun(double aa,double bb,double cc,double vall){
11 a=aa,b=bb,c=cc,val=vall;
12 }
13 bool operator < (const fun &k)const{
14 return val<k.val;
15 }
16 fun operator + (const fun &k)const{
17 return fun(a+k.a,b+k.b,c+k.c,0);
18 }
19 double mn(){
20 return c-sqr(b)/(4*a);
21 }
22 }D[N],w[N][N];
23 vector<double>v;
24 int n,vis[N];
25 double ans,d[N][N];
26 fun calc(){
27 fun ans;
28 D[0]=fun();
29 for(int i=1;i<n;i++)D[i]=fun(0,0,0,1e15);
30 memset(vis,0,sizeof(vis));
31 for(int i=0;i<n;i++){
32 int k=-1;
33 for(int j=0;j<n;j++)
34 if ((!vis[j])&&((k<0)||(D[j]<D[k])))k=j;
35 vis[k]=1;
36 ans=ans+D[k];
37 for(int j=0;j<n;j++)D[j]=min(D[j],w[k][j]);
38 }
39 return ans;
40 }
41 class Egalitarianism2{
42 public:
43 double minStdev(vector<int>x,vector<int>y){
44 n=x.size();
45 for(int i=0;i<n;i++)
46 for(int j=0;j<n;j++)d[i][j]=sqrt(1LL*sqr(x[i]-x[j])+1LL*sqr(y[i]-y[j]));
47 for(int i=0;i<n;i++)
48 for(int j=i+1;j<n;j++)
49 for(int ii=i;ii<n;ii++)
50 for(int jj=ii+1;jj<n;jj++)
51 if ((i<ii)||(j<jj))v.push_back((d[i][j]+d[ii][jj])/2);
52 sort(v.begin(),v.end());
53 double lst=0;
54 ans=1e15;
55 for(int i=0;i<v.size();i++)
56 if ((!i)||(v[i]!=v[i-1])){
57 for(int j=0;j<n;j++)
58 for(int k=0;k<n;k++)w[j][k]=fun(1,-2*d[j][k],sqr(d[j][k]),sqr(v[i]-d[j][k]));
59 ans=min(ans,calc().mn()/(n-1));
60 lst=v[i];
61 }
62 return sqrt(ans);
63 }
64 };

[tc13008]Egalitarianism2的更多相关文章

随机推荐

  1. 实现一个简单的侧边导航Winform程序框架

    目录 简介 实现导航面板 实现方法 使用方法 实现标题栏 窗体拖拽及最大化 自定义窗体按钮 标题显示 按钮设置 实现状态栏 整体使用 参考文章 简介 每次新项目都要想着界面怎么设计好,但想来想去上位机 ...

  2. 基于注解实现jackson动态JsonProperty

    基于注解实现jackson动态JsonProperty @JsonProperty 此注解用于属性上,作用是把该属性的名称序列化为另外一个名称,如把trueName属性序列化为name,但是值是固定的 ...

  3. 解决nodejs的npm命令无反应的问题

    最近在弄cordova,又要折腾nodejs了. 今天安装cordova模块的时候,看到nodejs的默认模块安装路径在c盘 于是想修改下,按命令 npm config set prefix . 结果 ...

  4. Great books for learning C++

    Great books for learning C++ Here are three great books for learning C++ – whether you know C++ alre ...

  5. WEB安全指南

    说明:本文是Mozilla Web应用部署文档,对运维或者后端开发团队的部署行为进行指导.该部署安全规范内容充实,对于部署有很大意义.同时也涉及到了许多web前端应用安全的基本知识,如CSP, TOK ...

  6. Coursera Deep Learning笔记 深度卷积网络

    参考 1. Why look at case studies 介绍几个典型的CNN案例: LeNet-5 AlexNet VGG Residual Network(ResNet): 特点是可以构建很深 ...

  7. airtest常用指令

    airtest 操作adb命令   常用adb 1)对特定设备执行adb指令 dev = connect_device("Android:///device1") dev.shel ...

  8. Java:AQS 小记-2(ReentrantLock)

    Java:AQS 小记-2(ReentrantLock) 整体结构 ReentrantLock 类图 AbstractOwnableSynchronizer 类 public abstract cla ...

  9. Unity 3D手游对不同分辨率屏幕的UI自适应

    目前安卓手机的屏幕大小各异,没有统一的标准,因此用Unity 3D制作的手游需要做好对不同分辨率屏幕的UI自适应,否则就会出现UI大小不一和位置错位等问题. 我们的项目在开发时的参照分辨率(Refer ...

  10. BUAA-软件工程-个人总结与心得

    提问回顾以及个人总结 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 提问回顾与个人总结 我在这个课程的目标是 学习软件开发的过程,团队之间的写作 ...