There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges. You are given the integer n and the array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree. Return an array answer of length n where answer[i] is the sum of the distances between the ith node in the tree and all other nodes.
  Example 1:
       

  Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] Output: [8,12,6,10,10,10] Explanation: The tree is shown above. We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
 
  

class Solution {
public:
vector<int> sumOfDistancesInTree(int n, vector<vector<int>>& edges) {
//好久没做和图论相关的题目了 图论的题目 dfs bfs?
//链接图链表
vector<int> res(n),count(n);
vector<vector<int>> tree(n);
for(auto &edge:edges)
{
tree[edge[0]].push_back(edge[1]);
tree[edge[1]].push_back(edge[0]); }
helper(tree,0,-1,count,res);
helper2(tree,0,-1,count,res);
return res; } void helper(vector<vector<int>> &tree,int cur,int pre,vector<int>&count,vector<int>& res)
{
for(int i:tree[cur])
{
if(i==pre) continue;
helper(tree,i,cur,count,res);
count[cur]+=count[i];//这个统计更新的逻辑 还是不懂。。
res[cur]+=res[i]+count[i];
}
++count[cur];
}
void helper2(vector<vector<int>> &tree,int cur,int pre,vector<int>&count,vector<int>& res)
{
for(int i:tree[cur])
{
if(i==pre) continue;
res[i]=res[cur]-count[i]+count.size()-count[i];
helper2(tree, i, cur, count, res);
}
}
};

【leetcode】834. Sum of Distances in Tree(图算法)的更多相关文章

  1. [LeetCode] 834. Sum of Distances in Tree 树中距离之和

    An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given. The ith edge co ...

  2. [LeetCode] 834. Sum of Distances in Tree

    LeetCode刷题记录 传送门 Description An undirected, connected treewith N nodes labelled 0...N-1 and N-1 edge ...

  3. 834. Sum of Distances in Tree —— weekly contest 84

    Sum of Distances in Tree An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges a ...

  4. [Swift]LeetCode834. 树中距离之和 | Sum of Distances in Tree

    An undirected, connected tree with N nodes labelled 0...N-1 and N-1 edges are given. The ith edge co ...

  5. 树中的路径和 Sum of Distances in Tree

    2019-03-28 15:25:43 问题描述: 问题求解: 写过的最好的Hard题之一. 初看本题,很经典的路径和嘛,dfs一遍肯定可以得到某个节点到其他所有节点的距离和.这种算法的时间复杂度是O ...

  6. leetcode834 Sum of Distances in Tree

    思路: 树形dp. 实现: class Solution { public: void dfs(int root, int p, vector<vector<int>>& ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [LeetCode#110, 112, 113]Balanced Binary Tree, Path Sum, Path Sum II

    Problem 1 [Balanced Binary Tree] Given a binary tree, determine if it is height-balanced. For this p ...

  9. [LeetCode] Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

随机推荐

  1. cm2 逆向分析

    目录 cm2 逆向分析 前言 查壳 逆向分析 encrypt函数 POC代码 cm2 逆向分析 前言 这是逆向实战之CTF比赛篇的第3篇,在这里我就不再讲的特别小白了,有些简单操作可能会略过. 查壳 ...

  2. Gitee图床设置

    https://gitee.com/ 创建新仓库 点击右上角加号->新建仓库,填写基本信息后点击下面的创建即可 https://gitee.com/projects/new 创建新令牌 点击设置 ...

  3. linux 关于 环境变量

    有关环境变量的文件 系统级环境变量:每一个登录到系统的用户都能够读取到系统级的环境变量       用户级环境变量:每一个登录到系统的用户只能够读取属于自己的用户级的环境变量  文件加载顺序: ==& ...

  4. shell 脚本二进制安装mysql

    以下脚本的手动安装连接:https://www.cnblogs.com/leihongnu/p/12581793.html [ #/bin/bash#脚本安装 mysql,上传安装包至 /rootcd ...

  5. 大爽Python入门教程 1-5 答案

    大爽Python入门公开课教案 点击查看教程总目录 1 方向变换 >>> 51//4 12 >>> 51%4 3 答: 向左转51次之后, 小明面朝东方, 转过了1 ...

  6. go微服务框架Kratos笔记(一)入门教程

    kratos简介 Kratos 一套轻量级 Go 微服务框架,包含大量微服务相关功能及工具 本文基于kratos v2.0.3,windows平台,其他系统平台均可借鉴参考 环境搭建 Golang开发 ...

  7. ECharts + jsp 图表

    ... <%@ page language="java" pageEncoding="UTF-8"%> <%@page import=&quo ...

  8. [atAGC029F]Construction of a tree

    构造一张二分图,左边是$n$个点,右边是$n-1$个集合,按照点属于集合连边 定义一组匹配的意义,即说明该点的父亲在该集合中选择 利用dinic求出二分图的最大匹配,若不为$n-1$则无解,否则考虑如 ...

  9. [bzoj1107]驾驶考试

    转化题意,如果一个点k符合条件,当且仅当k能到达1和n考虑如果l和r($l<r$)符合条件,容易证明那么[l,r]的所有点都将会符合条件,因此答案是一个区间枚举答案区间[l,r],考虑如何判定答 ...

  10. [POI2002][HAOI2007]反素数

    题意 反素数 想法 证明这样一个结论 对于一个可行的反素数\(p\) \(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_ ...