正题

题目链接:https://loj.ac/p/143


题目大意

给出一个数\(p\),让你判定是否为质数。


解题思路

\(Miller-Rabin\)是一种基于费马小定理和二次探测定理的具有较高正确性的高效质数判定算法。

首先讲一下两个定理

  1. 费马小定理:$$gcd(a,p)=1\ \ \ \Rightarrow\ \ \ a^{p-1}=1(mod\ p)$$
  2. 二次探测定理:若\(p\)是一个素数且有\(0<x<p\)那么有$$x^n=1(mod\ p)\ \ \ \Rightarrow\ \ \ n=1\ or\ p-1$$

这两个定理我们怎么使用呢,我们先将\(p-1\)分解成\(2^st\)的形式,这样我们对于一个数\(a^t\)就可以进行\(s\)次平方将其变为\(a^{p-1}\)。

再选取一个较小的质数\(a\),然后不停将\(a^t\)平方,每平方一次就使用一次二次探测定理来判定质数。知道\(a^t\)平方\(s\)次后变为\(a^{p-1}\)就再用一次费马小定理。

当然这样无法完全保证正确性,但是如果我们多拿几个质数试一试就可以大大缩小错误概率。并且目前可以证明在\(int\)范围内使用前\(30\)个质数是保证不会出错的,但是一般代码中为了确保效率会使用少一些素数。

注意使用\(long\ long\)时乘数可能会超过范围,所以可以用黑科技\(O(1)\)的快速乘来解决


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll pri[20]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71};
ll ksc(ll a,ll b,ll p){
a%=p;b%=p;
ll c=(long double)a*b/p;
long double ans=a*b-c*p;
if(ans<0)ans+=p;
else if(ans>=p)ans-=p;
return ans;
}
ll power(ll x,ll b,ll p){
ll ans=1;
while(b){
if(b&1)ans=ksc(ans,x,p);
x=ksc(x,x,p);b>>=1;
}
return ans;
}
bool MB(ll p){
if(p==2)return 1;
if(p<2||!(p&1))return 0;
ll s=0,t=p-1;
while(!(t&1))
s++,t>>=1;
for(ll i=0;i<10&&pri[i]<p;i++){
ll x=power(pri[i],t,p),k;
for(ll j=0;j<s;j++){
k=ksc(x,x,p);
if(k==1&&x!=1&&x!=p-1)
return 0;
x=k;
}
if(x!=1)return 0;
}
return 1;
}
int main()
{
ll x;
while(scanf("%lld",&x)!=EOF){
if(MB(x))printf("Y\n");
else printf("N\n");
}
}

Loj#143-[模板]质数判定【Miller-Rabin】的更多相关文章

  1. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  2. Miller Rabin 详解 && 小清新数学题题解

    在做这道题之前,我们首先来尝试签到题. 签到题 我们定义一个函数:\(qiandao(x)\) 为小于等于 x 的数中与 x 不互质的数的个数.要求 \(\sum\limits _{i=l}^r qi ...

  3. LibreOJ#143 质数判定 [Miller_Rabin]

    题目传送门 质数判定 题目描述 判定输入的数是不是质数. 输入格式 若干行,一行一个数 x. 行数不超过 $1.5\times 10^4$ 输出格式 对于输入的每一行,如果 x是质数输出一行 Y,否则 ...

  4. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

  5. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  6. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  7. Miller Rabin 算法简介

    0.1 一些闲话 最近一次更新是在2019年11月12日.之前的文章有很多问题:当我把我的代码交到LOJ上,发现只有60多分.我调了一个晚上,尝试用{2, 3, 5, 7, 11, 13, 17, 1 ...

  8. poj 1811 Pallor Rho +Miller Rabin

    /* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...

  9. Miller Rabin算法详解

    何为Miller Rabin算法 首先看一下度娘的解释(如果你懒得读直接跳过就可以反正也没啥乱用:joy:) Miller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重 ...

随机推荐

  1. com.github.ulisesbocchio:jasypt-spring-boot-starter:2.0.0引用了sping cloud Finchley.M8版本,一直报错说不能从阿里云下载

    解决方法: 1.找到idea或者eclipase中maven插件引向得settings.xml文件 2.修改文件中<mirror/>标签(配置仓库镜像用得)中<mirrorOf/&g ...

  2. Docker创建seafile搭建私有云

    docker-compose.yml version: '2.0' services: db: image: mariadb:10.1 container_name: seafile-mysql en ...

  3. mfc HackerTools拖动文件

    VOID DragAcceptFiles(          HWND hWnd,    BOOL fAccept); 这个函数的调用,表示你要让某个窗体能够接受文件的拖入.第一个参数指定是哪个窗口, ...

  4. WPF---数据绑定之ValidationRule数据校验综合Demo(七)

     一.概述 我们利用ValidationRule以及ErrorTemplate来制作一个简单的表单验证. 二.Demo 核心思想:我们在ValidationRule中的Validate函数中进行验证, ...

  5. 【springcloud】API Gateway 的路由和过滤(Zuul--1)

    转自:https://blog.csdn.net/pengjunlee/article/details/87084646 Zuul是什么? API Gateway 是随着微服务(Microservic ...

  6. (转)致Java程序员:你离架构师还差多远?

    转至:https://blog.csdn.net/ityouknow/article/details/82782965 几乎每个Java程序员心中,都有着成为架构师的技术追求.那么,成为Java架构师 ...

  7. hdfs中数据迁移

    1.hdfs集群间数据迁移 hadoop distcp hdfs://192.128.112.66:8020/user/hive/warehouse/data.db/dwi_xxxx_d  /user ...

  8. 15-SpringCloud Stream

    Stream是什么及Binder介绍 官方文档1 官方文档2 Cloud Stream中文指导手册 什么是Spring Cloud Stream? 官方定义Spring Cloud Stream是一个 ...

  9. “ShardingCore”是如何针对分表下的分页进行优化的

    分表情况下的分页如何优化 首先还是要给自己的开原框架打个广告 sharding-core 针对efcore 2+版本的分表组件,首先我们来快速回顾下目前市面上分表下针对分页常见的集中解决方案 分表解决 ...

  10. K8S的核心概念

    1.Pod -- 是最小部署单元 -- 是一组容器的集合 -- Pod中的容器共享网络 -- 生命周期是短暂的 2.controller -- 确保预期的pod副本的数量 -- 确保所有的node运行 ...