Genomic SelectioninPlant Breeding: Methods,Models,and Perspectives

国际玉米小麦改良中心(CIMMYT)José Crossa 2017年发表在《Trends in Plant Science》上的综述。

1. GS/GP在植物育种中的角色

  • 过去的植物育种主要借助分子标记辅助选择法(MAS)来进行表型选择(Phenotype selection, PS)。对于简单性状,使用QTL关联标记具有主效应,但对复杂性状、多环境及不同遗传背景的应用则显得困难。QTL定位的连锁分析主要基于双亲群体,与性状关联的标记效应较低(染色体重组率低)。

  • 研究者又开始专注于非双亲群体和染色体片段的精细定位(高重组率),但针对的是一些重要的经济性状。微效的QTL受环境影响大,但高密度SNP芯片给了标记性状关联准确性的希望。

  • 基因组选择(Genomic selection,GS)或基因组预测(Genomic-enabledprediction,GP)利用了所有的分子标记来进行表型的选择。

  • GS/GP有两个方面应用:一是育种程式中早期世代的加性效应预测(比如双亲杂交的F2代选择),这种方法育种家更关注加性值(Additive values,BVs),而非整个遗传值,因此利用加性线性模型来评估标记效应就够了;另一个应用是预测个体的全部遗传值,同时考虑加性效应和非加性效应(显性和上位性效应)来评价品种的表现。使用多个环境的试验来预测品系的遗传值。

  • G矩阵特点是分子标记远大于群体数目(在机器学习中就是特征大于案例),预测的难度和训练群体大小、性状遗传力、分子标记数目有关。

  • GS流程:TRN训练群体(又称参考群体)需要表型和基因型,TST测试群体(又称候选群体)只需基因型。

  • GS和玉米常规DH育种比较:一年两季

2. GP模型应用

GP准确性受几个遗传因素影响:

  • 训练群的大小和遗传多样性,以及与测试群的亲缘关系;
  • 性状的遗传力。低遗传力和低标记效应的复杂性状对GS是适用的,但高遗传力的复杂性状很少能用高效应的少量标记来预测。
  • 针对不具有LD的大量分子标记控制的复杂性状,GP准确性较低,当遗传力和训练群体大小增加时,准确性上升。

将环境因素考虑进模型,构建多性状、多环境的方差-协方差矩阵与环境、性状及其互作之间的遗传相关性。

GP模型中p>>n(标记远远大于群体)的特点使得鉴定困难,易出现过拟合,可通过惩罚回归、变量选择、降维以及赋予GP模型权重等方法来优化。(作者在文章附件中提供了GS模型复杂度及解决办法,但我没找到

从GBLUP到神经网络,一堆废话描述。

3. GP模型的准确性

RR-BLUP,KinshipGAUSS,BayesCp,BayesB,BaysianLASSO,random forest,regression,RFR等各种模型对于目标性状的预测准确性还算好,也没有太大差异,但把群体结构等因素考虑进去,准确性并没有提升多少。

动物育种中GP的模型一般是基于单一环境,但在植物育种中GxE互作是影响非常大的。

GxE 互作:基因型与环境互作



MxE 互作:分子标记与环境互作

分解标记效应到每一个环境中,环境视为固定效应(不知道理解的是否正确,详细信息只有在附件中查看

机器学习:

一些研究应用机器学习中的分类器,如多层感知机MLP、概率神经网络PNN等来预测个体表现(如分类上、中、下三等),AUC评价指标。

CIMMYT的实践

与传统育种相比,GS目的就是以更低的成本和更少的时间来实现更大的遗传增益,CIMMYT已经在玉米的双亲和多亲群体中进行了GS实施,来快速提升遗传增益。(*具体如何实施需要找更详细的资料**)

4. 植物育种的GS展望

将多性状多环境的GS与高通量表型相结合:

高通量表型平台(High-ThroughputPhenotyping,HTP)减少表型调查的成本,同时与系谱结合起来提升准确性。

种质资源的GS应用:

种质资源骨干材料选择,结合多性状、多环境选择,提高种质资源基因库,以便后续直接使用。

5. 小结

  • 线性模型(如GBLUP)和机器学习算法已经能识别复杂模式,做出正确决策;基于核的方法(如RKHS)已广泛应用于植物基因组预测;在GBLUP基础上结合基因组和系谱的GxE,优化的几种统计模型在预测个体的准确性方面有了提升。
  • 使用HTP如高强度高光谱图像技术,结合早期测试中的基因组和系谱信息,共同用于统计模型,通过增加选择强度来加速遗传增益。
  • 深度学习,如神经网络的方法似乎有望提高基因组预测。基因组选择超过了家系繁育和MAS增强复杂性状的遗传增益,具有明显的优势。
  • 开发基因库登录的GP模型对于未开发的访问以及繁殖计划的多样性将很重要,以加快发展并释放新基因型。

这篇综述有点长,有点啰嗦,本身没提供太多信息,最有价值的部分可能是它的附件。当有需要时,可查看其中引用的相应文献。

【GS文献】植物育种中基因组选择的方法、模型及展望的更多相关文章

  1. 【GS文献】从家畜到植物,通过基因组选择提高遗传增益

    目录 说明 1.前言 2.植物GS瓶颈 3.提高GS预测的准确性 4.GS与现代育种技术结合 5.GS开源育种网络 说明 Enhancing Genetic Gain through Genomic ...

  2. 【GS文献】测序时代植物复杂性状育种之基因组选择

    综述:Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding 要 ...

  3. 【GS文献】基因组选择在植物分子育种应用的最新综述(2020)

    目录 1. 简介 2. BLUP类模型 3. Bayesian类模型 4. 机器学习 5. GWAS辅助的GS 6. 杂交育种 7. 多性状 8. 长期选择 9. 预测准确性评估 10. GS到植物育 ...

  4. 【GS基础】植物基因组选择研究人员及数量遗传学发展一览

    目录 1.GS研究 2.数量遗传发展 GS应用主要在国外大型动物和种企,国内仍以学术为主.近期整理相关学术文献,了解到一些相关研究人员,记录下备忘查询,但不可能全面. 1.GS研究 Theo Meuw ...

  5. 【百奥云GS专栏】全基因组选择之工具篇

    目录 1. 免费开源包/库 1.1 R包 1.2 Python库 2. 成熟软件 3. WEB/GUI工具 前面我们已经介绍了基因组选择的各类模型,今天主要来了解一下做GS有哪些可用的软件和工具.基因 ...

  6. 【百奥云GS专栏】全基因组选择之模型篇

    目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. ...

  7. 【百奥云GS专栏】1-全基因组选择介绍

    目录 什么是基因组选择? 基因组选择技术的发展 基因组选择的原理和流程 基因组选择的模型 基因组选择的展望 参考资料 什么是基因组选择? 基因组选择(Genomic Selection,简称GS)这一 ...

  8. 【GS文献】植物全基因组选择育种技术原理与研究进展

    目录 1. 优势杂交育种预测 2. GS育种原理与模型算法 岭回归和LASSO回归 贝叶斯方法 GBLUP和RRBLUP 偏最小二乘法 支持向量机/支持向量回归 其他方法 3. 模型预测能力验证 4. ...

  9. 【GS文献】基因组选择技术在农业动物育种中的应用

    中国农业大学等多家单位2017年合作发表在<遗传>杂志上的综述,笔记之. 作者中还有李宁院士,不胜唏嘘. 1.概述 GS的两大难题:基因组分型的成本,基因组育种值(genomic esti ...

随机推荐

  1. Java:并发笔记-05

    Java:并发笔记-05 说明:这是看了 bilibili 上 黑马程序员 的课程 java并发编程 后做的笔记 4. 共享模型之内存 本章内容 上一章讲解的 Monitor 主要关注的是访问共享变量 ...

  2. flink中使用lambda表达式

    flink中使用lambda表达式 1.使用lambda的一个示例 2.使用上面这种写法通常或得到如下错误 3.解决方案 4.建议 5.完整代码 在 java8中有一种新的语法糖,即 lambda表达 ...

  3. java监控JVM的内存使用情况等

    以下的程序监控参数的代码,有些是从网络上获取的,此处进行一个记录是为了以后如果要用到方便记录. 1.引入jar包,为了获取一些cpu的使用率等信息 <dependency> <gro ...

  4. 线路由器频段带宽是是20M好还是40M好

    无线路由器频段带宽还是40M好. 40M的信号强,速度快.   1.20MHz在11n的情况下能达到144Mbps带宽.穿透性不错.传输距离较远 40MHz在11n的情况下能达到300Mbps带宽.穿 ...

  5. vcs(UST)Undefined System Task Call

    转载:VCS求助啊 - 微波EDA网 (mweda.com) Error-[UST] Undefined System Task Call../../path/bench/path.v, 51Unde ...

  6. 在c中使用正则表达式

    今天学习编译原理的时候,用c写一个简易的文法识别器实验遇到了一个问题:要用正则表达式去识别正则文法里面的A->ω,A->Bω, 其中ω属于T的正闭包,也就是说我们对正则文法的产生式进行抽象 ...

  7. 3D 穿梭效果?使用 CSS 轻松搞定

    背景 周末在家习惯性登陆 Apex,准备玩几盘.在登陆加速器的过程中,发现加速器到期了. 我一直用的腾讯网游加速器,然而点击充值按钮,提示最近客户端升级改造,暂不支持充值(这个操作把我震惊了~).只能 ...

  8. 学习JS的第四天

    一.循环 1.循环嵌套 1.一个循环内包含完整的另一个循环语句. 2.被包含的循环语句叫内循环,包含别的循环的循环语句叫外循环. 3.外循环每执行一次循环,内循环都会完全执行所有循环次数. 4.循环嵌 ...

  9. Linux服务——二、配置NFS及autofs自动挂载服务

    一.NFS服务配置步骤 NFS的作用:能够使两台虚拟机之间实现文件共享.数据同步 准备:主机名.网络.yum源 Server端: 1.安装nfs-util和rpcbind:(图形化自带) [root@ ...

  10. Java 多线程 - 总结概述

    概述 菜鸟教程: Java 给多线程编程提供了内置的支持. 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. 多线程是多任务的一种特别的形式,但多线程 ...