Codeforces Round #740 Div. 2
A. Simply Strange Sort
题意
定义一个函数\(f_{i}\) : 如果\(a_i \ge a_{i+1}\) swap(\(a_i\) \(a_{i+1}\))
定义一个操作:
第奇数次是 执行 \(f_1\) \(f_3\)... \(f_{n-2}\)
第偶数次是 执行 \(f_2\) \(f_4\)... \(f_{n-1}\)
求出进行多少次操作可以使原数组变得有序
思路
模拟上述操作即可 判断符合条件也可以用 is_sorted函数
AC_CODE
#include <bits/stdc++.h>
#define x first
#define y second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i)
//#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0);
int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
}
void solve() {
int n; read(n);
vector<int> a(n + 1), b(n + 1);
for(int i = 1; i <= n; i ++ ) {
read(a[i]);
b[i] = i;
}
int cnt = 0;
for(int i = 1; i <= n; i ++ ) {
if(a == b) {
break;
}
//// if(is_sorted(all(a))) break;
if(i & 1) {
for(int j = 1; j <= n - 2; j += 2)
if(a[j] > a[j + 1]) swap(a[j], a[j + 1]);
}
else {
for(int j = 2; j <= n - 1; j += 2)
if(a[j] > a[j + 1]) swap(a[j], a[j + 1]);
}
cnt ++;
}
printf("%d\n", cnt);
}
signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
}
return 0;
}
B. Charmed by the Game
题意
题目背景: 乒乓球比赛
规定乒乓球发球为两方选手交替发球
如果本场A选手发球
- A赢了 被称为 A hold
- B赢了 被称为 B break
如果本场B选手发球
- B赢了 被称为 B hold
- A赢了 被称为 A break
给出 A 和 B 赢得次数
求出有多少种 break
思路
我们可以发现赢得场次是固定的, 因此我们只需要枚举A在发球场次赢得个数 就可以的到全部的break
reason 我们枚举了A在发球场次赢得个数 因此我们可以得到另外三种情况,就可以求出所有的break
注意: 第一场发球可能是A 也可能是B 因此 我们只需要求出A先发球 所有的break
然后用a+b-i 就是B先发球的break
AC_CODE
#include <bits/stdc++.h>
#define x first
#define y second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i)
//#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0);
int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
}
const int N = 2e5 + 10;
bool num[N];
int cnt, mid, px;
void solve() {
int a, b;
read(a); read(b);
px = a + b;
for(int i = 0; i <= px + 5; i ++ ) num[i] = false;
if(a < b) swap(a, b);
mid = (px + 1) / 2;
for(int i = mid; i >= mid - b; i -- ) { //i是A在他发球的场次赢得次数
cnt = mid - i + a - i;
num[cnt] = true;
num[px - cnt] = true;
}
vector<int> ans;
for(int i = 0; i <= px; i ++ )
if(num[i])
ans.pb(i);
printf("%d\n", ans.size());
for(int p : ans) printf("%d ", p);
puts("");
}
signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
}
return 0;
}
C - Deep Down Below
题意
略
思路
按照通过每个关卡所需要的最小力量排序, 然后按照这个顺序枚举即可
AC_CODE
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define debug2(x) cout<<#x" ----> "<<x<< ' '
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i)
//#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0);
int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
}
const int N = 1e5 + 10;
vector<int> a[N];
PII num[N];
int need[N];
int t, n, rr;
inline void solve() {
scanf("%d", &t);
rep(i, 0, t - 1) {
a[i].clear();
scanf("%d", &n);
rep(j, 1, n) {
scanf("%d", &rr);
a[i].pb(rr);
}
int res = 0;
int st = 0;
int cnt = 0;
rep(j, 0, n - 1) {
if(a[i][j] >= res) {
st = a[i][j] + 1 - cnt;
res = a[i][j] + 2;
}
else {
res ++;
}
cnt ++;
}
need[i] = st;
num[i].fi = st;
num[i].se = i;
}
sort(num, num + t);
int st = 0, res = 0, cnt = 0;
for(int i = 0; i < t; i ++ ) {
int idx = num[i].se;
for(int j = 0; j < a[idx].size(); j ++ ) {
if(a[idx][j] >= res) {
st = a[idx][j] + 1 - cnt;
res = a[idx][j] + 2;
}
else {
res ++;
}
cnt ++;
}
}
printf("%d\n", st);
}
signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
}
return 0;
}
D1. Up the Strip (simplified version)
整除分块
我们枚举 \(l\) 因此\(i/l\) 可以由\(i\) 除以 (l ---> i/(i/l)) 这个区间内的数字得到
这就是整除分块, 因此我们可以通过这个转移方程求出通过除法转移过来的
减法通过求后缀和可以O(1) 求出
AC_CODE
#include <bits/stdc++.h>
using namespace std;
#define int long long
int mod;
int x[1010000];
int getmax(int n,int l)
{
return n/(n/l);
}
signed main()
{
int n;
scanf("%lld%lld",&n,&mod);
x[n] = 1;
int sum = 0;
for(int i = n;i>=2;i--)
{
x[i] = (x[i] + sum) % mod;
for(int l = 2,r;l<=i;l=r+1)
{
r = getmax(i,l);
x[i/l] = (x[i/l] + (r-l+1) * x[i]) % mod;
}
sum = (sum + x[i]) %mod;
}
printf("%lld",(x[1] + sum)%mod);
return 0;
}
D2. Up the Strip
枚举倍数
对于每个\(i\) 只有\([i \times j, (i+1) \times j)\)区间内的数字才可以通过除以\(j\) 得到 (j是枚举出的每个被除数0)
对于减法 我们加上后缀和即可
AC_CODE
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int N = 4e6 + 10;
LL n, m;
LL dp[N];
LL s[N];
LL sum(int l, int r) {
return (s[l] - s[r + 1] + m) % m;
}
int main() {
scanf("%lld%lld", &n, &m);
dp[n] = 1;
s[n] = 1;
for(int i = n - 1; i; i --) {
dp[i] = s[i + 1];
for(int j = 2; j <= n / i; j ++ ) {
int l = i * j, r = min(n, (LL)j * (i + 1) - 1);
dp[i] = dp[i] + sum(l, r);
dp[i] %= m;
}
s[i] = s[i + 1] + dp[i];
s[i] %= m;
}
printf("%lld", (dp[1] + m) % m);
return 0;
}
Codeforces Round #740 Div. 2的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
随机推荐
- E. Number With The Given Amount Of Divisors
E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...
- Manthan, Codefest 16 D. Fibonacci-ish
D. Fibonacci-ish time limit per test 3 seconds memory limit per test 512 megabytes input standard in ...
- 1298 - One Theorem, One Year
1298 - One Theorem, One Year PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: ...
- 「ARC096C」Everything on It
Solution 容斥,钦定 \(i\) 个数 \(\leq 1\) 次. \[Ans=\sum_{i=0}^n (-1)^i\binom{n}{i}F(i) \] 其中 \(F(i)\) 表示有 \ ...
- Glossary Collection
目录 直接修饰用 间接强调用 (多为副词) 过渡用 特别的名词 动词 词组 各种介词 句子 摘要 引言 总结 正文 实验 直接修饰用 Word 含义 例句 近义词 nuanced adj. 微妙的:具 ...
- [C++]C++ STL库函数大全
#include <assert.h> //设定插入点 #include <ctype.h> //字符处理 #include <errno.h> //定义错误码 # ...
- OpenCV 可自动调整参数的透视变换
在shiter大牛的基础之上,对于他的程序做了一定的修改. 首先,通过两个循环使得霍夫变换两个参数:角度的分辨率和点个数的阈值可以变换,这样就不必对于每一张图像都手动的设置阈值.其次,过滤掉了两个距离 ...
- DOTween实现缓动变值动效
DOTween.To(getter, setter, to, float duration) 是常用的一个变值方法(一定时间将某变量从起始值到终点值进行变化),可以便捷实现 滚分.涨进度条 等功能 但 ...
- Hadoop用户配置免密登陆
Hadoop用户配置免密登陆, 参考其他免密配置方法自己总结的更简洁的步骤. 要实现A免密登陆B,需要把A生成的公钥放到B的对应目录下, 要实现ABC之间免密登陆,把3者的公钥汇总到一个文件中, 然后 ...
- .net core在linux下图片中文乱码
不得不吐槽一下,.net core 2.2的System.Drawing在linux有很多坑,又是依赖libgdiplus,又是依赖gdiplus,依赖解决了又来了个中文乱码,怎的一声哀叹 这里做个笔 ...