题目跳转链接

A. Simply Strange Sort

题意

定义一个函数\(f_{i}\) : 如果\(a_i \ge a_{i+1}\) swap(\(a_i\) \(a_{i+1}\))

定义一个操作:

第奇数次是 执行 \(f_1\) \(f_3\)... \(f_{n-2}\)

第偶数次是 执行 \(f_2\) \(f_4\)... \(f_{n-1}\)

求出进行多少次操作可以使原数组变得有序

思路

模拟上述操作即可 判断符合条件也可以用 is_sorted函数

AC_CODE

#include <bits/stdc++.h>
#define x first
#define y second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i) //#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end() using namespace std; typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0); int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
} void solve() {
int n; read(n);
vector<int> a(n + 1), b(n + 1);
for(int i = 1; i <= n; i ++ ) {
read(a[i]);
b[i] = i;
}
int cnt = 0;
for(int i = 1; i <= n; i ++ ) {
if(a == b) {
break;
} //// if(is_sorted(all(a))) break; if(i & 1) {
for(int j = 1; j <= n - 2; j += 2)
if(a[j] > a[j + 1]) swap(a[j], a[j + 1]);
}
else {
for(int j = 2; j <= n - 1; j += 2)
if(a[j] > a[j + 1]) swap(a[j], a[j + 1]);
}
cnt ++; }
printf("%d\n", cnt); } signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
} return 0;
}

B. Charmed by the Game

题意

题目背景: 乒乓球比赛

规定乒乓球发球为两方选手交替发球

如果本场A选手发球

- A赢了 被称为 A hold

- B赢了 被称为 B break

如果本场B选手发球

- B赢了 被称为 B hold

- A赢了 被称为 A break

给出 A 和 B 赢得次数

求出有多少种 break

思路

我们可以发现赢得场次是固定的, 因此我们只需要枚举A在发球场次赢得个数 就可以的到全部的break

reason 我们枚举了A在发球场次赢得个数 因此我们可以得到另外三种情况,就可以求出所有的break

注意: 第一场发球可能是A 也可能是B 因此 我们只需要求出A先发球 所有的break

然后用a+b-i 就是B先发球的break

AC_CODE

#include <bits/stdc++.h>
#define x first
#define y second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i) //#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end() using namespace std; typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0); int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
}
const int N = 2e5 + 10;
bool num[N];
int cnt, mid, px;
void solve() {
int a, b;
read(a); read(b);
px = a + b;
for(int i = 0; i <= px + 5; i ++ ) num[i] = false;
if(a < b) swap(a, b);
mid = (px + 1) / 2;
for(int i = mid; i >= mid - b; i -- ) { //i是A在他发球的场次赢得次数
cnt = mid - i + a - i;
num[cnt] = true;
num[px - cnt] = true;
}
vector<int> ans;
for(int i = 0; i <= px; i ++ )
if(num[i])
ans.pb(i);
printf("%d\n", ans.size());
for(int p : ans) printf("%d ", p);
puts("");
} signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
} return 0;
}

C - Deep Down Below

题意

思路

按照通过每个关卡所需要的最小力量排序, 然后按照这个顺序枚举即可

AC_CODE


#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define mk make_pair
#define debug(x) cout<<#x" ----> "<<x<<endl
#define debug2(x) cout<<#x" ----> "<<x<< ' '
#define rep(i, b, s) for(int i = (b); i <= (s); ++i)
#define pre(i, b, s) for(int i = (b); i >= (s); --i) //#define int long long
#define endl '\n'
#define ios ios::sync_with_stdio(false); cin.tie(0), cout.tie(0)
#define all(v) (v).begin(),(v).end() using namespace std; typedef unsigned long long ULL;
typedef pair<int, int> PII ;
typedef pair<double, double> PDD ;
typedef long long LL;
const int INF = INT_MAX;
const int mod = 1e9 + 7;
const double eps = 1e-10;
const double pi = acos(-1.0); int lowbit(int x){return x&-x;}
int gcd(int a, int b) {return b ? gcd(b, a%b) : a;}
LL ksm(LL a, LL b) {if (b == 0) return 1; LL ns = ksm(a, b >> 1); ns = ns * ns % mod; if (b & 1) ns = ns * a % mod; return ns;}
LL lcm(LL a, LL b) {return a / gcd(a, b) * b;}
template < typename T >
inline void read(T &x)
{
x = 0; bool f = 0; char ch = getchar();
while(!isdigit(ch)){f ^= !(ch ^ 45);ch=getchar();}
while(isdigit(ch)) x= (x<<1)+(x<<3)+(ch&15),ch=getchar();
x = f ? -x : x;
}
const int N = 1e5 + 10;
vector<int> a[N];
PII num[N];
int need[N];
int t, n, rr; inline void solve() {
scanf("%d", &t); rep(i, 0, t - 1) {
a[i].clear();
scanf("%d", &n);
rep(j, 1, n) {
scanf("%d", &rr);
a[i].pb(rr);
}
int res = 0;
int st = 0;
int cnt = 0;
rep(j, 0, n - 1) {
if(a[i][j] >= res) {
st = a[i][j] + 1 - cnt;
res = a[i][j] + 2;
}
else {
res ++;
}
cnt ++;
}
need[i] = st;
num[i].fi = st;
num[i].se = i;
}
sort(num, num + t); int st = 0, res = 0, cnt = 0;
for(int i = 0; i < t; i ++ ) {
int idx = num[i].se;
for(int j = 0; j < a[idx].size(); j ++ ) {
if(a[idx][j] >= res) {
st = a[idx][j] + 1 - cnt;
res = a[idx][j] + 2;
}
else {
res ++;
}
cnt ++;
}
}
printf("%d\n", st); } signed main()
{
int T = 1; scanf("%d",&T);
while(T -- ) {
solve();
} return 0;
}

D1. Up the Strip (simplified version)

整除分块

我们枚举 \(l\) 因此\(i/l\) 可以由\(i\) 除以 (l ---> i/(i/l)) 这个区间内的数字得到

这就是整除分块, 因此我们可以通过这个转移方程求出通过除法转移过来的

减法通过求后缀和可以O(1) 求出

AC_CODE

#include <bits/stdc++.h>
using namespace std;
#define int long long
int mod;
int x[1010000];
int getmax(int n,int l)
{
return n/(n/l);
}
signed main()
{
int n;
scanf("%lld%lld",&n,&mod);
x[n] = 1;
int sum = 0;
for(int i = n;i>=2;i--)
{
x[i] = (x[i] + sum) % mod;
for(int l = 2,r;l<=i;l=r+1)
{
r = getmax(i,l);
x[i/l] = (x[i/l] + (r-l+1) * x[i]) % mod;
}
sum = (sum + x[i]) %mod;
}
printf("%lld",(x[1] + sum)%mod);
return 0;
}

D2. Up the Strip

枚举倍数

对于每个\(i\) 只有\([i \times j, (i+1) \times j)\)区间内的数字才可以通过除以\(j\) 得到 (j是枚举出的每个被除数0)

对于减法 我们加上后缀和即可

AC_CODE

#include <bits/stdc++.h>
#define LL long long using namespace std; const int N = 4e6 + 10;
LL n, m;
LL dp[N];
LL s[N]; LL sum(int l, int r) {
return (s[l] - s[r + 1] + m) % m;
} int main() {
scanf("%lld%lld", &n, &m);
dp[n] = 1;
s[n] = 1;
for(int i = n - 1; i; i --) {
dp[i] = s[i + 1];
for(int j = 2; j <= n / i; j ++ ) {
int l = i * j, r = min(n, (LL)j * (i + 1) - 1);
dp[i] = dp[i] + sum(l, r);
dp[i] %= m;
}
s[i] = s[i + 1] + dp[i];
s[i] %= m;
}
printf("%lld", (dp[1] + m) % m); return 0;
}

Codeforces Round #740 Div. 2的更多相关文章

  1. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  2. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  3. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  4. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  5. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  6. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  7. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  8. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

  9. Codeforces Round #268 (Div. 2) ABCD

    CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...

随机推荐

  1. 【剑指Offer】二叉搜索树的第k个结点 解题报告(Python)

    [剑指Offer]二叉搜索树的第k个结点 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-intervie ...

  2. The Longest Straight(FZUoj2216)

     Problem 2216 The Longest Straight Accept: 82    Submit: 203Time Limit: 1000 mSec    Memory Limit : ...

  3. 编写Java程序,实现一个简单的echo程序(网络编程TCP实践练习)

    首先启动服务端,客户端通过TCP的三次握手与服务端建立连接: 然后,客户端发送一段字符串,服务端收到字符串后,原封不动的发回给客户端. ECHO 程序是网络编程通信交互的一个经典案例,称为回应程序,即 ...

  4. 《手把手教你》系列技巧篇(五十三)-java+ selenium自动化测试-上传文件-上篇(详细教程)

    1.简介 在实际工作中,我们进行web自动化的时候,文件上传是很常见的操作,例如上传用户头像,上传身份证信息等.所以宏哥打算按上传文件的分类对其进行一下讲解和分享. 2.为什么selenium没有提供 ...

  5. SpringBoot集成MyBatis-Plus自定义SQL

    1.说明 本文介绍Spring Boot集成MyBatis-Plus框架后, 基于已经创建好的Spring Boot工程, 添加自定义的SQL实现复杂查询等操作. 自定义SQL主要有两种方式, 一种是 ...

  6. Windows下安装配置jdk

    1.jdk安装 从官网获取jdk安装包后, 双击图形化安装,一路next即可. 2.配置JavaHome 打开计算机->系统属性->高级系统设置->环境变量 在系统变量下面添JAVA ...

  7. SpringBoot 之 国际化

    增加国际化i18n语言配置: # src/main/resources/i18n/login.properties login.btn=登录 # src/main/resources/i18n/log ...

  8. ANT 通配符使用说明

    通配符说明 通配符 说明 ? 匹配任意一个字符 * 匹配零个.一个.多个字符 ** 匹配零个.一个.多个目录 使用示例 URL路径 说明 /app/p?ttern 匹配 /app/pattern 和 ...

  9. Docker_容器(container)使用(4)

    参数说明 -i: 交互式操作. -t: 终端. -d: 指定容器运行模式. --name:指定容器的NAMES字段名称,不指定则随机生成名称 --restart:容器启动策略.默认为no,常用为alw ...

  10. Flask_Flask-Script脚本扩展的使用(八)

    Flask-Script扩展包提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行 ...