题解 P3158 [CQOI2011]放棋子
题解
本题是一个 \(DP\) 加 容斥,容斥的式子很好推,重点是如何想到和如何推出 \(DP\) 部分的式子。
因为不同种颜色的棋子不能放在同一行或同一列,所以不同种的棋子是相对独立的。
据此,我们可以推出一个式子,设 \(f_{i,j,k}\) 表示前 \(k\) 种颜色占据了 \(i\) 行 \(j\) 列。
\]
其中 \(g_{i,j,k}\) 表示 \(k\) 个棋子占据 \(i\) 行 \(j\) 列,\(num_k\) 表示第 \(k\) 种颜色棋子的个数,后面的表示组合数。
来解释一下这个式子,其中因为 \(k-1\) 已经占据了 \(l\) 行 \(r\) 列,那么第 \(k\) 种颜色的棋子要占据 \(i-l\) 行 \(j-r\) 列。
所以这 \(num_k\) 颗棋子只能放在这 \(i-l\) 行 \(j-r\) 行的交汇处,所以由此我们可以得出 \(g\) 的式子
显然直接推不好推,所以我们要用容斥。易得 \(g_{i,j,k}\) 初始状态设为 \((^{i×j}_{num_k})\) ,但其中有一些情况无法占据所有的行列,所以
\]
最后,所有的行列不一定占据,但所有种类的棋子一定要放上,所以答案即为
\]
\(AC \kern 0.4emCODE:\)
#include<bits/stdc++.h>
#define ri register int
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
inline char gc() {return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
inline int read() {
ri x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define ll long long
static const int N=33;
static const int MOD=1e9+9;
static const int CN=12;
int C[N*N][N*N],g[N][N],f[N][N][CN],n,m,c;
inline int main() {
n=read(),m=read(),c=read();
const int S=n*m;
C[0][0]=f[0][0][0]=1;
for (ri i(1);i<=S;p(i)) {
C[i][0]=1;
for (ri j(1);j<=i;p(j)) C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
for (ri k(1);k<=c;p(k)) {
ri num=read();
memset(g,0,sizeof(g));
for (ri i(1);i<=n;p(i)) {
for (ri j(1);j<=m;p(j)) {
if (i*j<num) continue;//要加上优化,显然
g[i][j]=C[i*j][num];
for (ri l(1);l<=i;p(l)) {
for (ri r(1);r<=j;p(r)) {
if (l==i&&r==j) continue;
g[i][j]=((ll)g[i][j]-(ll)g[l][r]*C[i][l]%MOD*C[j][r]%MOD+MOD)%MOD;
// printf("g[%d][%d]=%d\n",i,j,g[i][j]);
}
}
}
}
for (ri i(1);i<=n;p(i)) {
for (ri j(1);j<=m;p(j)) {
for (ri l(0);l<i;p(l)) {
for (ri r(0);r<j;p(r)) {
if ((i-l)*(j-r)<num) break;
f[i][j][k]=((ll)f[i][j][k]+(ll)f[l][r][k-1]*g[i-l][j-r]%MOD*C[n-l][i-l]%MOD*C[m-r][j-r]%MOD)%MOD;
}
}
}
}
}
int ans=0;
for (ri i(1);i<=n;p(i)) {
for (ri j(1);j<=m;p(j)) ans=(ans+f[i][j][c])%MOD;
}
printf("%d\n",ans);
return 0;
}
}
int main() {return nanfeng::main();}
时间复杂度 \(O(n^2m^2c)\)
题解 P3158 [CQOI2011]放棋子的更多相关文章
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
- P3158 [CQOI2011]放棋子
传送门 题解(因为公式太多懒得自己抄写一遍了--) //minamoto #include<bits/stdc++.h> #define ll long long #define R re ...
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
随机推荐
- varnish配置语言(2)
目录 1. Backend servers 2. 多个后端 3. Varnish 中的后端服务器和虚拟主机 4. 调度器 5. 健康检查 6. Hashing 7. 优雅模式 Grace mode 和 ...
- Vue中watch与computed的区别
一. 计算属性(computed) 1.计算属性是为了模板中的表达式简洁,易维护,符合用于简单运算的设计初衷.对于运算过于复杂,冗长,且不好维护,因此我们对于复杂的运算应该 使用计算属性的方式去书写. ...
- Kubernetes全栈架构师(二进制高可用安装k8s集群扩展篇)--学习笔记
目录 二进制Metrics&Dashboard安装 二进制高可用集群可用性验证 生产环境k8s集群关键性配置 Bootstrapping: Kubelet启动过程 Bootstrapping: ...
- 在 Intenseye,为什么我们选择 Linkerd2 作为 Service Mesh 工具(Part.2)
在我们 service mesh 之旅的第一部分中,我们讨论了"什么是服务网格以及我们为什么选择 Linkerd2?".在第二部分,我们将讨论我们面临的问题以及我们如何解决这些问题 ...
- ES6 let const关键字
在es6中,引入了let和const关键字: 1.letES6 新增了let命令,用来声明变量.它的用法类似于var,但是所声明的变量,只在let命令所在的代码块内有效. (1)在块级作用域里有效(比 ...
- Appium - adb monkey事件(二)
操作事件简介 Monkey所执行的随机事件流中包含11大事件,分别是触摸事件.手势事件.二指缩放事件.轨迹事件.屏幕旋转事件.基本导航事件.主要导航事件.系统按键事件.启动Activity事件.键盘事 ...
- 将base64Url对应图片保存到本地
上图中的内容就是base64编码之后对应的Url 图中base64,之前的都是用于声明该图片的格式以及它的编码格式 base64,之后的就是该图片对应的数据了 我们只需要把数据转换为字节保存下来即 ...
- java高级编程笔记(四)
java的Object类: 1.Object 类位于 java.lang 包中,编译时会自动导入:Java 的所有类都继承了 Object,子类可以使用 Object 的所有方法. 2.Object ...
- 第十七篇 -- QTreeWidget与QDockWidget
效果图: 目录和工具条的创建在前面几节就已经学过了,所以目录和工具条的布局可以自己画. 那么下面的部分,左侧是一个DockWidget,里面放置一个TreeWidget.右边是一个ScrollArea ...
- Jmeter二次开发 java取样器示例
public SampleResult runTest(JavaSamplerContext javaSamplerContext) { //生成sampleResult对象,用于请求的命名.标记状态 ...