五、 电商用户画像环境搭建

众所周知,Hive的执行任务是将hql语句转化为MapReduce来计算的,Hive的整体解决方案很不错,但是从查询提交到结果返回需要相当长的时间,查询耗时太长。这个主要原因就是由于Hive原生是基于MapReduce的,那么如果我们不生成MapReduce Job,而是生成Spark Job,就可以充分利用Spark的快速执行能力来缩短HiveHQL的响应时间。

本项目采用SparkSql与hive进行整合(spark on hive),通过SparkSql读取hive中表的元数据,把HiveHQL底层采用MapReduce来处理任务,导致性能慢的特点,改为更加强大的Spark引擎来进行相应的分析处理,快速的为用户打上标签构建用户画像。

5.1 环境准备

  • 1、搭建hadoop集群

  • 2、安装hive构建数据仓库

  • 3、安装spark集群

  • 4、sparksql 整合hive

5.2 sparksql整合hive

  Spark SQL主要目的是使得用户可以在Spark上使用SQL,其数据源既可以是RDD,也可以是外部的数据源(比如文本、Hive、Json等)。Spark SQL的其中一个分支就是Spark on Hive,也就是使用Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MR作业替换成了Spark作业。SparkSql整合hive就是获取hive表中的元数据信息,然后通过SparkSql来操作数据。

整合步骤:

① 需要将hive-site.xml文件拷贝到Spark的conf目录下,这样就可以通过这个配置文件找到Hive的元数据以及数据存放位置。

② 如果Hive的元数据存放在Mysql中,我们还需要准备好Mysql相关驱动,比如:mysql-connector-java-5.1.35.jar

5.3 测试sparksql整合hive是否成功

先启动hadoop集群,在启动spark集群,确保启动成功之后执行命令:

/var/local/spark/bin/spark-sql  --master spark://itcast01:7077  --executor-memory 1g  --total-executor-cores 4

指明master地址、每一个executor的内存大小、一共所需要的核数、

mysql数据库连接驱动。

执行成功后的界面:进入到spark-sql 客户端命令行界面

接下来就可以通过sql语句来操作数据库表:

查看当前有哪些数据库 ---show databases;

看到以上结果,说明sparksql整合hive成功!

日志太多,我们可以修改spark的日志输出级别(conf/log4j.properties)

前方高能:

在spark2.0版本后由于出现了sparkSession,在初始化sqlContext的时候,会设置默认的spark.sql.warehouse.dir=spark-warehouse,

此时将hive与sparksql整合完成之后,在通过spark-sql脚本启动的时候,还是会在哪里启动spark-sql脚本,就会在当前目录下创建一个spark.sql.warehouse.dir为spark-warehouse的目录,存放由spark-sql创建数据库和创建表的数据信息,与之前hive的数据信息不是放在同一个路径下(可以互相访问)。但是此时spark-sql中表的数据在本地,不利于操作,也不安全。

所有在启动的时候需要加上这样一个参数:

--conf  spark.sql.warehouse.dir=hdfs://node1:9000/user/hive/warehouse

保证spark-sql启动时不在产生新的存放数据的目录,sparksql与hive最终使用的是hive同一存放数据的目录。

如果使用的是spark2.0之前的版本,由于没有sparkSession,不会有spark.sql.warehouse.dir配置项,不会出现上述问题。

最后的执行脚本;

spark-sql \

--master spark://node1:7077 \

--executor-memory 1g \

--total-executor-cores 2 \

--conf  spark.sql.warehouse.dir=hdfs://node1:9000/user/hive/warehouse

SparkSQL电商用户画像(三)之环境准备的更多相关文章

  1. SparkSQL电商用户画像(五)之用户画像开发(客户基本属性表)

    7.电商用户画像开发 7.1用户画像--数据开发的步骤 u 数据开发前置依赖 -需求确定 pv uv topn -建模确定表结构 create table t1(pv int,uv int,topn ...

  2. SparkSQL电商用户画像(二)之如何构建画像

    四. 如何构建电商用户画像 4.1 构建电商用户画像技术和流程 构建一个用户画像,包括数据源端数据收集.数据预处理.行为建模.构建用户画像 有些标签是可以直接获取到的,有些标签需要通过数据挖掘分析到! ...

  3. SparkSQL电商用户画像(四)之电商用户画像数据仓库建立

    六.  电商用户画像数据仓库建立 7.1  数据仓库准备工作 为什么要对数据仓库分层?星型模型 雪花模型 User----->web界面展示指标表 l    用空间换时间,通过大量的预处理来提升 ...

  4. Flink SQL结合Kafka、Elasticsearch、Kibana实时分析电商用户行为

    body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...

  5. Spark项目之电商用户行为分析大数据平台之(三)大数据集群的搭建

    Zookeeper集群搭建 http://www.cnblogs.com/qingyunzong/p/8619184.html Hadoop集群搭建 http://www.cnblogs.com/qi ...

  6. Spark大型项目实战:电商用户行为分析大数据平台

    本项目主要讲解了一套应用于互联网电商企业中,使用Java.Spark等技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.页面跳转行为.购物行为.广告点击行为等)进行复杂的分析.用统计分 ...

  7. Spark项目之电商用户行为分析大数据平台之(六)用户访问session分析模块介绍

    一.对用户访问session进行分析 1.可以根据使用者指定的某些条件,筛选出指定的一些用户(有特定年龄.职业.城市): 2.对这些用户在指定日期范围内发起的session,进行聚合统计,比如,统计出 ...

  8. Spark项目之电商用户行为分析大数据平台之(二)CentOS7集群搭建

    一.CentOS7集群搭建 1.1 准备3台centos7的虚拟机 IP及主机名规划如下: 192.168.123.110 spark1192.168.123.111 spark2192.168.12 ...

  9. Spark项目之电商用户行为分析大数据平台之(一)项目介绍

    一.项目概述 本项目主要用于互联网电商企业中,使用Spark技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为.购物行为.广告点击行为等)进行复杂的分析.用统计分析出来的数据,辅助公司中 ...

随机推荐

  1. android 调用js,js调用android

    Java调用JavaScript   1.main.xml 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 <?xml v ...

  2. 阿里二面:什么是mmap?

    平时在面试中你肯定会经常碰见的问题就是:RocketMQ为什么快?Kafka为什么快?什么是mmap? 这一类的问题都逃不过的一个点就是零拷贝,虽然还有一些其他的原因,但是今天我们的话题主要就是零拷贝 ...

  3. PTA 数组元素的区间删除

    6-6 数组元素的区间删除 (20 分)   给定一个顺序存储的线性表,请设计一个函数删除所有值大于min而且小于max的元素.删除后表中剩余元素保持顺序存储,并且相对位置不能改变. 函数接口定义: ...

  4. .net core 和 WPF 开发升讯威在线客服系统【私有化部署免费版】发布

    希望 .net 和 WPF 技术时至今日,还能有一些存在感. 这个项目源于2015年前后,当时开发的初版,我使用了 ASP.NET MVC 做为后端,数据库使用原生 ADO.NET 进行操作.WPF ...

  5. 当初自学C++时的笔记记录

    编辑:刘风琛 最初编写日期:2020年4月11日下午 最新更新日期:2020年9月20日上午 标注: 从笔记开始截止到程序第四章"程序流程结构",使用Joplin编写,其余部分为T ...

  6. (七)Struts2Action访问Servlet API

    第一种方式: Struts2提供了一个ServletActionContext对象可以访问ServletAPI. 例如 HttpServletRequest request=ServletAction ...

  7. Node.js/Vue.js使用jsSHA库进行SHA1/2/3加密

    1 概述 jsSHA是一个用JS+TS实现完整SHA系列加密算法的加密库,包括: SHA1 SHA-224/256/384/512 SHA3-224/256/384/512 SHAKE128/256 ...

  8. redhat 7.6 部署禅道 yum [Errno 14] curl#37 - "Couldn't open file /mnt/repodata/repomd.

    记个流水账 redhat 7.6 上部署 禅道.  禅道官网下载 http://dl.cnezsoft.com/zentao/9.8.3/ZenTaoPMS.9.8.3.zbox_64.tar.gz ...

  9. Spring(11) - Introductions进行类扩展方法

    Introductions(引用),在 Aspect 中称为类型间的声明,使切面能够声明被通知的对象(拦截的对象)实现给定的接口,并提供该接口的实现. 简单点说可以将一个类的实现方法复制到未实现的类中 ...

  10. Andy‘s First Dictionary UVA - 10815

      Andy, 8, has a dream - he wants to produce his very own dictionary. This is not an easy task for h ...