网络模型mAP计算实现代码
一、mAP精度计算
这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是:
1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);
2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
3)False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
4)True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
P
代表precision即准确率,计算公式为预测样本中实际正样本数 / 所有的正样本数 即 precision=TP/(TP+FP);
R
代表recall即召回率,计算公式为 预测样本中实际正样本数 / 预测的样本数即 Recall=TP/(TP+FN)=TP/P
一般来说,precision和recall是鱼与熊掌的关系,往往召回率越高,准确率越低
AP
AP 即 Average Precision即平均精确度
mAP
mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object dection中衡量检测精度的指标。
F
度量(F-measure),F度量涵盖了准确率和召回率这两个指标。其计算公式如下:F = 2 * P * R / (P + R)
P-R曲线
P-R曲线即 以 precision 和 recall 作为 纵、横轴坐标 的二维曲线。通过选取不同阈值时对应的精度和召回率画出
总体趋势,精度越高,召回越低,当召回达到1时,对应概率分数最低的正样本,这个时候正样本数量除以所有大于等于该阈值的样本数量就是最低的精度值。
另外,P-R曲线围起来的面积就是AP值,通常来说一个越好的分类器,AP值越高。
总结一下,在目标检测中,每一类都可以根据 recall 和 precision绘制P-R曲线,AP就是该曲线下的面积,mAP就是所有类AP的平均值。
二.评测代码
import tensorflow as tf
#精确率评价指标
def metric_precision(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
precision=TP/(TP+FP)
return precision
#召回率评价指标
def metric_recall(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
recall=TP/(TP+FN)
return recall
#F1-score评价指标
def metric_F1score(y_true,y_pred):
TP=tf.reduce_sum(y_true*tf.round(y_pred))
TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred)))
FP=tf.reduce_sum((1-y_true)*tf.round(y_pred))
FN=tf.reduce_sum(y_true*(1-tf.round(y_pred)))
precision=TP/(TP+FP)
recall=TP/(TP+FN)
F1score=2*precision*recall/(precision+recall)
return F1score<br><br>
#编译阶段引用自定义评价指标示例
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy',
metric_precision,
metric_recall,
metric_F1score])
# AUC for a binary classifier
def auc(y_true, y_pred):
ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
binSizes = -(pfas[1:]-pfas[:-1])
s = ptas*binSizes
return K.sum(s, axis=0)
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# PFA, prob false alert for binary classifier
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# N = total number of negative labels
N = K.sum(1 - y_true)
# FP = total number of false alerts, alerts from the negative class labels
FP = K.sum(y_pred - y_pred * y_true)
return FP/N
#-----------------------------------------------------------------------------------------------------------------------------------------------------
# P_TA prob true alerts for binary classifier
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
y_pred = K.cast(y_pred >= threshold, 'float32')
# P = total number of positive labels
P = K.sum(y_true)
# TP = total number of correct alerts, alerts from the positive class labels
TP = K.sum(y_pred * y_true)
return TP/P
#接着在模型的compile中设置metrics
# False Discovery Rate(FDR)
from sklearn.metrics import confusion_matrix
y_true = [0,0,0,0,0,0,,1,1,1,1,1]
y_pred = [0,0,0,0,0,0,,1,1,1,1,1]
tn, fp , fn, tp = confusion_matrix(y_true, y_pred).ravel()
fdr = fp / (fp + tp)
print(fdr)
网络模型mAP计算实现代码的更多相关文章
- 前端JS面试题汇总 Part 2 (null与undefined/闭包/foreach与map/匿名函数/代码组织)
原文:https://github.com/yangshun/front-end-interview-handbook/blob/master/questions/javascript-questio ...
- C++算法之大数加法计算的代码
如下代码段是关于C++算法之大数加法计算的代码,希望对大家有用. { int length; int index; int smaller; int prefix = 0; if(NULL == sr ...
- Javascript时间差计算函数代码实例
Javascript时间差计算函数代码实例 <script language="javascript"> Date.prototype.dateDiff = funct ...
- 基于ACCESS和ASP的SQL多个表查询与计算统计代码(一)
近期在写几个关于"Project - Subitem - Task"的管理系统,说是系统还是有点夸大了,基本就是一个多表查询调用和insert.update的数据库操作.仅仅是出现 ...
- 关于UDP的检验和计算(附代码)
关于UDP的检验和计算(附代码) 在下午的学习过程中https://www.cnblogs.com/roccoshi/p/13032356.html 有一张图讲述了UDP的校验方法, 如下: 老师只粗 ...
- 目标检测性能评价——关于mAP计算的思考
1. 基本要求 从直观理解,一个目标检测网络性能好,主要有以下表现: 把画面中的目标都检测到--漏检少 背景不被检测为目标--误检少 目标类别符合实际--分类准 目标框与物体的边缘贴合度高-- 定位准 ...
- asp.net中C#中计算时间差代码
我用的最简单的办法是 代码如下 复制代码 DateTime dtone = Convert.ToDateTime("2007-1-1 05:32:22");DateTime dtw ...
- 使用java8的StreamAPI对集合计算进行代码重构
方法: 查询出所有部门成员中年龄大于30的员工姓名 部门对象: 员工对象: 模拟数据: private static List<Dept> list=new ArrayList<De ...
- 计算Python代码运行时间长度方法
在代码中有时要计算某部分代码运行时间,便于分析. import time start = time.clock() run_function() end = time.clock() print st ...
随机推荐
- Linux安装MySQL8高版本压缩包(通用)
前言 前段时间领导让我部署测试环境,希望安装高版本的MySQL,过程遇到很多问题,特此记录帮助迷失的人们 下载 MySQL官方下载地址:https://dev.mysql.com/downloads/ ...
- 分布式任务调度系统:xxl-job
任务调度,通俗来说实际上就是"定时任务",分布式任务调度系统,翻译一下就是"分布式环境下定时任务系统". xxl-job一个分布式任务调度平台,其核心设计目标是 ...
- 转载:java.math.BigDecimal 比较大小
BigDecimal a = new BigDecimal (101); BigDecimal b = new BigDecimal (111); //使用compareTo方法比较 //注意:a.b ...
- ASP去除所有html标签
ASP去除所有html标签 function nohtml(str) dim re Set re=new RegExp re.IgnoreCase =true re.Global=True re.Pa ...
- 【Java注解】@PostConstruct 注解相关
不多逼逼,直接看注解上面的文档, @PostConsturct PostConstruct注释用于需要执行的方法在依赖注入完成后执行任何初始化.这个方法必须在类投入服务之前调用. 这个所有支持依赖关系 ...
- VPS、云主机 and 服务器集群、云计算 的区别
VPS:(virtual private server)虚拟专用服务器,将一台服务器分割成多个虚拟专享服务器的优质服务.实现VPS的技术分为容器技术和虚拟化技术.在容器或虚拟机中,每个VPS都可分配独 ...
- XAMPP修改Apache默认网站目录htdocs的详解
XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的建 XAMPP 软件站集成环境包,大量站长在使用.正确安装好XAMPP后,默认是必须将php程序放到xampp\htdocs文件 ...
- Jenkins 基础篇 - 安装部署
Jenkins 安装 Jenkins 支持主流的 Linux 发行版系统,同时还支持 macOS.Windows.和 Docker 运行. 具体系统的 Jenkins 安装包可以去官网下载 https ...
- 说了你可能不信leetcode刷题局部链表反转D92存在bug,你看了就知道了
一.题目描述 找出数组中重复的数字 > 在一个长度为 n 的数组 nums 里的所有数字都在 0-n-1 的范围内.数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次. ...
- where优先级
select name from emply where id >5; 先找表from emply 再找条件 where id >5 最后打印 你想打印的字段 可以把select看成打印 ...