斐波那契数(Java)
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。
解题思路
斐波那契数是一道非常经典的题目,可以使用暴力递归,也可以使用动态规划等方法。本题给出四种解答,分别是
- 代码1 —— 暴力题解
- 代码2 —— 使用带备忘录的递归解法
- 代码3 —— dp数组的动态规划方法
- 代码4 —— 迭代,优化空间复杂度
代码1 —— 暴力题解
class Solution {
public int fib(int n) {
// base case
if (n == 0 || n == 1) {
return n;
}
// 递推关系
return fib(n - 1) + fib(n - 2);
}
}
时间复杂度:O(2^N)
空间复杂度:O(1)
代码2 —— 带备忘录的递归解法
class Solution {
public int fib(int n) {
// 备忘录全部初始化为0
int[] memo = new int[n + 1];
// 进行带备忘录的递归
return helper(memo, n);
}
private int helper(int[] memo, int n) {
// base case
if (n == 0 || n == 1) {
return n;
}
// 进行检查,已经计算过就不用在计算了
if (memo[n] != 0) {
return memo[n];
}
memo[n] = helper(memo, n - 1) + helper(memo, n - 2);
return memo[n];
}
}
时间复杂度:O(N)
空间复杂度:O(N)
代码3 —— 使用 dp 数组的动态规划方法
class Solution {
public int fib(int n) {
if (n == 0) {
return 0;
}
int[] dp = new int[n + 1];
// base case
dp[0] = 0; dp[1] = 1;
// 状态转移
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
时间复杂度:O(N)
空间复杂度:O(N)
代码4 —— 迭代,优化空间复杂度
class Solution {
// 优化空间复杂度
public int fib(int n) {
if (n == 0 || n == 1) {
return n;
}
// 递推关系
int prev = 0, curr = 1;
for (int i = 2; i <= n; i++) {
int sum = prev + curr;
prev = curr;
curr = sum;
}
return curr;
}
}
时间复杂度:O(N)
空间复杂度:O(1)
斐波那契数(Java)的更多相关文章
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
- 力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
- 斐波那契数列(Java实现)
描述 一个斐波那契序列,F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) (n>=2),根据n的值,计算斐波那契数F(n),其中0≤n≤1000. 输入 输入 ...
- hdu1316(大数的斐波那契数)
题目信息:求两个大数之间的斐波那契数的个数(C++/JAVA) pid=1316">http://acm.hdu.edu.cn/showproblem.php? pid=1316 这里 ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
- 斐波那契数[XDU1049]
Problem 1049 - 斐波那契数 Time Limit: 1000MS Memory Limit: 65536KB Difficulty: Total Submit: 1673 Ac ...
- C++求斐波那契数
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...
随机推荐
- CVPR2021 | Transformer用于End-to-End视频实例分割
论文:End-to-End Video Instance Segmentation with Transformers 获取:在CV技术指南后台回复关键字"0005"获取该论文 ...
- web浏览器知识点
网页是怎么形成的 前端的代码(英文字母)---->浏览器渲染 ------- > 客户眼中的效果 浏览器(显示代码) 游览器是网页显示,运行的平台,常用的的游览器有IE(Edge).火狐 ...
- 文件上传之WAF绕过及相安全防护
文件上传在数据包中可修改的地方 Content-Disposition:一般可更改 name:表单参数值,不能更改 filename:文件名,可以更改 Content-Type:文件 MIME,视情况 ...
- 9419页最新一线互联网Android面试题解析大全
网上高级工程师面试相关文章鱼龙混杂,要么一堆内容,要么内容质量太浅, 鉴于此我整理了如下安卓开发高级工程师面试题以及答案帮助大家顺利进阶,下面进入正题: 一.Android相关 1.Activity ...
- .Net Core+分布式配置中心(AgileConfig)
GitHub上AgileConfig非常详细,以下只是本人学习过程的整理 一.介绍 1.参考地址 https://github.com/dotnetcore/AgileConfig https://w ...
- 保存Total Commander的列宽
Total Commander的默认列宽经常显示不全内容,需要手工调整,用"Menu -> Configuration -> Save Position"可以永久保存列 ...
- pikachu 目录遍历 敏感信息泄露
目录遍历漏洞概述在web功能设计中,很多时候我们会要将需要访问的文件定义成变量,从而让前端的功能变的更加灵活. 当用户发起一个前端的请求时,便会将请求的这个文件的值(比如文件名称)传递到后台,后台再执 ...
- miniFTP项目实战四
项目简介: 在Linux环境下用C语言开发的Vsftpd的简化版本,拥有部分Vsftpd功能和相同的FTP协议,系统的主要架构采用多进程模型,每当有一个新的客户连接到达,主进程就会派生出一个ftp服务 ...
- 在java程序中使用protobuf
目录 简介 为什么使用protobuf 定义.proto文件 编译协议文件 详解生成的文件 Builders 和 Messages 序列化和反序列化 协议扩展 总结 简介 Protocol Buffe ...
- maven打jar包,导入本地jar
本地jar包存放目录 项目目录/lib/*.jar 导入jar包配置 <resources> <!--扫描到的配置yml--> <resource> <dir ...