斐波那契数(Java)
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。
解题思路
斐波那契数是一道非常经典的题目,可以使用暴力递归,也可以使用动态规划等方法。本题给出四种解答,分别是
- 代码1 —— 暴力题解
- 代码2 —— 使用带备忘录的递归解法
- 代码3 —— dp数组的动态规划方法
- 代码4 —— 迭代,优化空间复杂度
代码1 —— 暴力题解
class Solution {
public int fib(int n) {
// base case
if (n == 0 || n == 1) {
return n;
}
// 递推关系
return fib(n - 1) + fib(n - 2);
}
}
时间复杂度:O(2^N)
空间复杂度:O(1)
代码2 —— 带备忘录的递归解法
class Solution {
public int fib(int n) {
// 备忘录全部初始化为0
int[] memo = new int[n + 1];
// 进行带备忘录的递归
return helper(memo, n);
}
private int helper(int[] memo, int n) {
// base case
if (n == 0 || n == 1) {
return n;
}
// 进行检查,已经计算过就不用在计算了
if (memo[n] != 0) {
return memo[n];
}
memo[n] = helper(memo, n - 1) + helper(memo, n - 2);
return memo[n];
}
}
时间复杂度:O(N)
空间复杂度:O(N)
代码3 —— 使用 dp 数组的动态规划方法
class Solution {
public int fib(int n) {
if (n == 0) {
return 0;
}
int[] dp = new int[n + 1];
// base case
dp[0] = 0; dp[1] = 1;
// 状态转移
for (int i = 2; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
}
时间复杂度:O(N)
空间复杂度:O(N)
代码4 —— 迭代,优化空间复杂度
class Solution {
// 优化空间复杂度
public int fib(int n) {
if (n == 0 || n == 1) {
return n;
}
// 递推关系
int prev = 0, curr = 1;
for (int i = 2; i <= n; i++) {
int sum = prev + curr;
prev = curr;
curr = sum;
}
return curr;
}
}
时间复杂度:O(N)
空间复杂度:O(1)
斐波那契数(Java)的更多相关文章
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- Java实现 LeetCode 509 斐波那契数
509. 斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 ...
- 力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
- 斐波那契数列(Java实现)
描述 一个斐波那契序列,F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2) (n>=2),根据n的值,计算斐波那契数F(n),其中0≤n≤1000. 输入 输入 ...
- hdu1316(大数的斐波那契数)
题目信息:求两个大数之间的斐波那契数的个数(C++/JAVA) pid=1316">http://acm.hdu.edu.cn/showproblem.php? pid=1316 这里 ...
- 用x种方式求第n项斐波那契数,99%的人只会第一种
大家好啊,我们又见面了.听说有人想学数据结构与算法却不知道从何下手?那你就认真看完本篇文章,或许能从中找到方法与技巧. 本期我们就从斐波那契数列的几种解法入手,感受算法的强大与奥妙吧. 原文链 ...
- UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数
大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...
- 斐波那契数[XDU1049]
Problem 1049 - 斐波那契数 Time Limit: 1000MS Memory Limit: 65536KB Difficulty: Total Submit: 1673 Ac ...
- C++求斐波那契数
题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...
随机推荐
- noip模拟测试21
考试总结:这次考试,前两道题的题面描述不是很清楚,导致我不知道输出格式到底是什么,挂了差不多80分(好多人也是这样),总体来说,这次考试的前两道题暴力分是打满了,最后一道题打了一个假的暴搜,在考场上没 ...
- Linux下MySQL基础及操作语法
什么是MySQL? MySQL是一种开源关系数据库管理系统(RDBMS),它使用最常用的数据库管理语言-结构化查询语言(SQL)进行数据库管理.MySQL是开源的,因此任何人都可以根据通用公共许可证下 ...
- Java方法——递归
递归(栈) package method; public class Demon04 { //递归思想 public static void main(String[] ar ...
- 从门外汉到腾讯Android高级研发——一个半路出家菜鸟的艰难逆袭之路
我是在去年3月份加入腾讯公司,目前是腾讯公司某技术部门里面的一个小负责人,年薪月薪大税后概30K,谈不上多么厉害,但在回想自己半路出家学习编程,从一个销售到现在终于进入中国互联网顶尖公司,还是有些许感 ...
- CSS Flex布局完全指南 #flight.Archives002
Title/CSS Flex布局完全指南 #flight.Archives002 序(from Ruanyf) : 网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模 ...
- 七夕特别篇|用Python绘画牛郎织女在鹊桥相见
大家好,我是辰哥~ 今天就是七夕节,首先提前祝福有伴侣的小伙伴,七夕快乐,没有伴侣的小伙伴,今天就会找到伴侣,(给看到这句话的你好运加持,哈哈哈). 作为会Python的我们必须做点好玩且有意义的东西 ...
- JavaGUI输入框事件监听的使用
JavaGUI输入框事件监听的使用 package GUI; import java.awt.*; import java.awt.event.ActionEvent; import java.awt ...
- Linux虚拟机配置SSH免密登录
本环境为CentOS 7(点击镜像下载iso文件),无图界面. 启动SSH服务 在/usr/sbin/有一个文件为sshd,然后输入绝对路径/usr/sbin/sshd即可开启ssh服务. 然后输入命 ...
- 字符串对比 BASIC-15
字符串对比 代码 import java.util.Scanner; /*给定两个仅由大写字母或小写字母组成的字符串(长度介于1到10之间),它们之间的关系是以下4中情况之一: 1:两个字符串长度不等 ...
- Color Theme of Emacs
Choose color theme interactively: M-x customize-themes, or M-x color-theme-select (use key "q&q ...