20210811 Dove 打扑克,Cicada 与排序,Cicada 拿衣服
考场
开考感觉 T3 比较可做。T1 看上去不难但毫无思路。
先想了 25min T3,想到一个确定左端点,二分最长的右端点,甚至想到了用猫树维护区间 or and。。。上厕所回来发现假了,没有单调性
T1 还是不会做,T2 甚至不会写暴力。直到 8.10 才结束思考。
T1 暴力有 80pts,先写了
继续看 T3,根据区间变大后四个变量的变化情况想到了分治,又是想了很久发现复杂度假了,心态就炸了。这时候已经 9.20 了,洗了把脸强行冷静,写了 T3 暴力,但状态很差,写错很多细节。
最后 30min 看 T2,感觉可以枚举 rnd() 的值来算出每种情况下的位置,觉得不太好写在归并排序,预处理了的个数组假装它是随机数。但预处理多长却不好确定。一开始是 \(n\),但样例都过不去,瞎胡分析一波感觉是每个数值的元素个数减一的和,也不太对。最终预处理的 \(21\) 位。
res
rk10 80+15+28
T2 后面的点都 T 了,开到 \(20\) 能多拿 20pts
rk1 熊子豪 100+0+92
rk2 yzf 80+0+100
rk3 肖鸣孜 80+100+0
总结
没啥好说的,就是菜
T1 毕竟没想多久,算是有个借口
T2 又是大 DP,练了这么久还是没啥长进,甚至一点思路都没有。不仅有人场切,而且很多人(比如 ycx)都有思路,只是细节问题/没写完。不擅长不是借口,万一正式比赛考出来怎么办,还是得练。练习的时候多自己想,能抵抗多久题解的诱惑提高就有多少
T3 想了很久都没想到点上,还是性质推的不够,确实也没见过这种做法,但还是很多人想出来了。不仅如此,有人常数小拿了 64pts,有人的乱搞 A 了,也有 72pts 的,但我只拿了最基础的暴力分,对于这种数据有梯度的题就要多卡常、多剪枝,剪枝可以大胆一点。
感觉洗脸挺有用的,起码暴力没挂分。
sol
双没时间写了
T1
const int N = 1e5+5;
int n,m;
int mx,fa[N],val[N],cnt[N];
vector<int> vec;
int find(int x) { return fa[x]==x ? x : fa[x]=find(fa[x]); }
void add(int i)
{ if( !cnt[i]++ ) vec.insert(lower_bound(vec.begin(),vec.end(),i),i); }
void del(int i)
{ if( !--cnt[i] ) vec.erase(remove(vec.begin(),vec.end(),i)); }
signed main() {
read(n,m);
For(i,1,n) fa[i] = i, val[i] = 1, add(1);
while( m-- ) {
int op,x,y; read(op);
if( op == 1 ) {
read(x,y); x = find(x), y = find(y);
if( x == y ) continue;
del(val[x]), del(val[y]);
fa[y] = x, val[x] += val[y];
add(val[x]);
} else {
read(x);
LL ans = 0, suf = 0;
if( !x ) {
for(int i : vec) ans += cnt[i] * (cnt[i]-1ll) / 2;
++x;
}
for(auto it = vec.begin(); it != vec.end(); ++it) suf += cnt[*it];
for(auto itl = vec.begin(), itr = itl; itr != vec.end(); ++itl) {
while( itr != vec.end() && *itr-*itl < x ) suf -= cnt[*itr++];
if( itr == vec.end() ) break;
ans += cnt[*itl] * suf;
}
write(ans);
}
}
return iocl();
}
T2
我写了另一种 DP,时间复杂度也是 \(O(n^3)\),但空间复杂度是 \(O(n^2\log n)\),内存访问不连续,比 sol做法 跑得慢
const int N = 505, mod = 998244353, inv2 = 499122177;
int n,a[N];
LL f[10][N][N],g[N][N];
void merge(int u,int l,int r) {
if( l == r ) return f[u][l][l] = 1, void();
int mid = l+r>>1;
merge(u+1,l,mid), merge(u+1,mid+1,r);
memset(g,0,sizeof g);
g[l][mid+1] = 1;
For(i,l,mid+1) For(j,mid+1,r+1) if( i <= mid || j <= r ) {
g[i][j] %= mod;
if( j == r+1 ) g[i+1][j] += g[i][j];
else if( i == mid+1 ) g[i][j+1] += g[i][j];
else if( a[i] < a[j] ) g[i+1][j] += g[i][j];
else if( a[i] > a[j] ) g[i][j+1] += g[i][j];
else g[i+1][j] += g[i][j] * inv2 %mod, g[i][j+1] += g[i][j] * inv2 %mod;
}
For(i,l,r) For(j,l,mid+1) For(k,mid+1,r+1) if( j <= mid || k <= r ) {
if( k == r+1 ) f[u][i][j+k-mid-1] += f[u+1][i][j] * g[j][k] %mod;
else if( j == mid+1 ) f[u][i][j+k-mid-1] += f[u+1][i][k] * g[j][k] %mod;
else if( a[j] < a[k] ) f[u][i][j+k-mid-1] += f[u+1][i][j] * g[j][k] %mod;
else if( a[j] > a[k] ) f[u][i][j+k-mid-1] += f[u+1][i][k] * g[j][k] %mod;
else f[u][i][j+k-mid-1] += (f[u+1][i][j]+f[u+1][i][k]) * g[j][k] %mod * inv2 %mod;
}
For(i,l,r) For(j,l,r) f[u][i][j] %= mod;
sort(a+l,a+r+1);
}
signed main() {
read(n);
For(i,1,n) read(a[i]);
merge(1,1,n);
For(i,1,n) {
LL ans = 0;
For(j,1,n) ans += f[1][i][j] * j %mod;
write(ans%mod,' ');
}
return iocl();
}
T3
const int N = 1e6+5;
int n,m,a[N];
struct Node { int r,o,an; int val() { return o-an; } };
list<Node> lis;
namespace st {
int lg[N],f[20][N],g[20][N];
void init() {
For(i,2,n) lg[i] = lg[i>>1] + 1;
For(i,1,n) f[0][i] = g[0][i] = a[i];
For(j,1,19) for(int i = 1; i+(1<<j)-1 <= n; ++i)
f[j][i] = max(f[j-1][i],f[j-1][i+(1<<j-1)]),
g[j][i] = min(g[j-1][i],g[j-1][i+(1<<j-1)]);
}
int mx(int l,int r) { int k = lg[r-l+1]; return max(f[k][l],f[k][r-(1<<k)+1]); }
int mn(int l,int r) { int k = lg[r-l+1]; return min(g[k][l],g[k][r-(1<<k)+1]); }
}
namespace seg {
#define ls (u<<1)
#define rs (u<<1|1)
struct Node { int l,r,mx; } t[N*4];
void build(int u,int l,int r) {
t[u].l = l, t[u].r = r, t[u].mx = -1;
if( l == r ) return;
int mid = l+r>>1;
build(ls,l,mid), build(rs,mid+1,r);
}
void modify(int u,int l,int r) {
if( l <= t[u].l && t[u].r <= r ) { ckmax(t[u].mx,r-l+1); return; }
if( l <= t[ls].r ) modify(ls,l,r);
if( t[rs].l <= r ) modify(rs,l,r);
}
void print(int u) {
if( t[u].l == t[u].r ) { write(t[u].mx,' '); return; }
ckmax(t[ls].mx,t[u].mx), ckmax(t[rs].mx,t[u].mx);
print(ls), print(rs);
}
#undef ls
#undef rs
}
bool check(list<Node>::iterator it,int l,int r)
{ return it->val()+st::mn(l,r)-st::mx(l,r) >= m; }
signed main() {
read(n,m);
For(i,1,n) read(a[i]);
st::init(), seg::build(1,1,n);
For(i,1,n) {
for(auto it = lis.begin(); it != lis.end(); ++it)
it->o |= a[i], it->an &= a[i];
lis.pb(Node{i,a[i],a[i]});
for(auto itl = lis.begin(), itr = itl; ++itr != lis.end(); )
if( itl->val() == itr->val() ) lis.erase(itl), itl = itr;
else ++itl;
for(auto it = lis.begin(); it != lis.end(); ++it) if( check(it,it->r,i) ) {
int l = 1, r = it->r;
if( it != lis.begin() ) l = (--it)->r+1, ++it;
while( l < r ) {
int mid = l+r>>1;
if( check(it,mid,i) ) r = mid;
else l = mid+1;
}
seg::modify(1,l,i);
break;
}
}
seg::print(1);
return iocl();
}
20210811 Dove 打扑克,Cicada 与排序,Cicada 拿衣服的更多相关文章
- 「10.28」Dove 打扑克(链表)·Cicada 与排序(概率)·Cicada 拿衣服(各种数据结构)
A. Dove 打扑克 考场思考半天线段树树状数组,没有什么想法 打完暴力后突然想到此题用链表实现会很快. 因为只有$n$堆,所以设最多有$x$个不同的堆数,那么$x\times (x-1)/2==n ...
- [CSP-S模拟测试]:Cicada与排序(概率DP)
题目传送门(内部题93) 输入格式 第一行一个整数$n$,代表数列的长度. 接下来一行$n$个数$a_i$,用空格分隔开. 输出格式 输出一行$n$个数,表示原数列上这个位置在执行后的期望位置,注意输 ...
- NOIP 模拟 $36\; \rm Cicada 与排序$
题解 \(by\;zj\varphi\) 设 \(rk_{i,j}\) 表示第 \(i\) 个数最后在相同的数里排第 \(j\) 位的概率. 转移时用一个 \(dp\),\(dp_{i,j,0/1}\ ...
- [UPC10525]:Dove打扑克(暴力+模拟)
题目描述 $Dove$和$Cicada$是好朋友,他们经常在一起打扑克来消遣时光,但是他们打的扑克有不同的玩法. 最开始时,牌桌上会有$n$个牌堆,每个牌堆有且仅有一张牌,第$i$个牌堆里里里那个扑克 ...
- 晚间测试13 A. Dove 打扑克 vector +模拟
题目描述 分析 这道题比较关键的一点就是要看出最终牌数的种类数不会超过 \(\sqrt{n}\) 种 知道了这个性质我们就可以用 \(vector\) 维护一个有序的序列 \(vector\) 中存放 ...
- NOIP 模拟 $36\; \rm Dove 打扑克$
题解 \(by\;zj\varphi\) 引理 对于一个和为 \(n\) 的数列,不同的数的个数最多为 \(\sqrt n\) 证明: 一个有 \(n\) 个不同的数的数列,和最小就是 \(n\) 的 ...
- 题解 Dove 打扑克
传送门 考场上觉得复杂度是假的就没怎么优化,然后考完题解帮我证明了它是真的-- 首先合并可以用并查集维护,可以顺便维护出集合的大小 对于操作2,发现如果 \(size_i\) 是确定的,可以用权值线段 ...
- 数据结构和算法(Golang实现)(20)排序算法-选择排序
选择排序 选择排序,一般我们指的是简单选择排序,也可以叫直接选择排序,它不像冒泡排序一样相邻地交换元素,而是通过选择最小的元素,每轮迭代只需交换一次.虽然交换次数比冒泡少很多,但效率和冒泡排序一样的糟 ...
- csp-s模拟测试91
csp-s模拟测试91 倒悬吃屎的一套题. $T1$认真(?)分析题意发现复杂度不能带$n$(?),计划直接维护答案,考虑操作对答案的影响,未果.突然发现可以动态开点权值线段树打部分分,后来$Tm$一 ...
随机推荐
- jquery版本更新后无live函数的处理.TypeError: $(...).live is not a function
jquery live函数语法 jquery版本更新, 发现一个问题: jq自带的live没有了.控制台下会有如下的提示:火狐: TypeError: $(...).live is not a fun ...
- 剖析虚幻渲染体系(08)- Shader体系
目录 8.1 本篇概述 8.2 Shader基础 8.2.1 FShader 8.2.2 Shader Parameter 8.2.3 Uniform Buffer 8.2.4 Vertex Fact ...
- CreatFile打开驱动失败
使用 CreateFile(DRIVER_PATH, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ, 0, OPEN_EXISTING, FILE_AT ...
- js遍历终极大法--再也不用苦逼的for循环了
while循环 while后面跟循环条件和执行语句,只要满足条件,就会一直执行里面的执行 var i = 0 while(i<10){ console.log(i) i++ } do...whi ...
- MySQL的函数使用
目录 COUNT()函数基本使用 SUM( )函数基本使用 AVG()函数基本使用 MAX()函数基本使用 MIN()函数基本使用 字符函数 concat()和concat_ws() LEFT()与R ...
- Kotlin强化实战!这份学习手册让你的面试稳如泰山
一.引言 正如官网的slogan所描述:kotlin,是一门让程序员写代码时更有幸福的现代语言. 同时,也正如维基百科里介绍: JetBrains公司希望Kotlin能够推动IntelliJ IDEA ...
- Linux系统CPU信息查询方法
lscpu cat /proc/cpuinfo对绝大多数Linux适用,lscpu更简练 cat /proc/cpuinfo 下面是一个实例: processor : 0 vendor_id : Ge ...
- tomcat下载、安装及配置
一,下载Tomcat 1.进入官网Http://tomcat.apache.org/,选择download,下载所需要的Tomcat版本. 注意有zip和exe两种格式的 zip(64-bit Win ...
- 「移动端」Web页面适配
一.什么是移动端适配 移动端 Web 页面,就是常说的手机 h5页面.webview页面.公众号开发的网页等. 由于手机机型较多,各个手机的屏幕尺寸不一样,所以做移动端页面,需要考虑在安卓和ios的各 ...
- SQL 练习28
查询平均成绩大于等于 85 的所有学生的学号.姓名和平均成绩 SELECT Student.SId,Student.Sname,平均成绩 FROM Student , (SELECT sid,AVG( ...