python 回归分析
一、线性回归
1 绘制散点图
import matplotlib.pyplot as plt x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] plt.scatter(x, y)
plt.show()
结果:

2 导入 scipy 并绘制线性回归线:
import matplotlib.pyplot as plt
from scipy import stats x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] slope, intercept, r, p, std_err = stats.linregress(x, y) def myfunc(x):
return slope * x + intercept mymodel = list(map(myfunc, x)) plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
结果:

二、多项式回归
如果数据点显然不适合线性回归(穿过数据点之间的直线),那么多项式回归可能是理想的选择。像线性回归一样,多项式回归使用变量 x 和 y 之间的关系来找到绘制数据点线的最佳方法。

1 绘制散点图
import matplotlib.pyplot as plt x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] plt.scatter(x, y)
plt.show()
结果:

2 导入 numpy 和 matplotlib,然后画出多项式回归线:
import numpy
import matplotlib.pyplot as plt x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) myline = numpy.linspace(1, 22, 100) plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()
结果

R-Squared
重要的是要知道 x 轴和 y 轴的值之间的关系有多好,如果没有关系,则多项式回归不能用于预测任何东西。
该关系用一个称为 r 平方( r-squared)的值来度量。
r 平方值的范围是 0 到 1,其中 0 表示不相关,而 1 表示 100% 相关。
Python 和 Sklearn 模块将为您计算该值,您所要做的就是将 x 和 y 数组输入:
import numpy
from sklearn.metrics import r2_score x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) print(r2_score(y, mymodel(x)))
三、多元回归
多元回归就像线性回归一样,但是具有多个独立值,这意味着我们试图基于两个或多个变量来预测一个值。
在 Python 中,我们拥有可以完成这项工作的模块。首先导入 Pandas 模块:
import pandas
Pandas 模块允许我们读取 csv 文件并返回一个 DataFrame 对象。
此文件仅用于测试目的,您可以在此处下载:cars.csv
df = pandas.read_csv("cars.csv")
然后列出独立值,并将这个变量命名为 X。
将相关值放入名为 y 的变量中。
X = df[['Weight', 'Volume']]
y = df['CO2']
提示:通常,将独立值列表命名为大写 X,将相关值列表命名为小写 y。
我们将使用 sklearn 模块中的一些方法,因此我们也必须导入该模块:
from sklearn import linear_model
在 sklearn 模块中,我们将使用 LinearRegression() 方法创建一个线性回归对象。
该对象有一个名为 fit() 的方法,该方法将独立值和从属值作为参数,并用描述这种关系的数据填充回归对象:
regr = linear_model.LinearRegression()
regr.fit(X, y)
现在,我们有了一个回归对象,可以根据汽车的重量和排量预测 CO2 值:
# 预测重量为 2300kg、排量为 1300ccm 的汽车的二氧化碳排放量: predictedCO2 = regr.predict([[2300, 1300]])
完整实例:
import pandas
from sklearn import linear_model df = pandas.read_csv("cars.csv") X = df[['Weight', 'Volume']]
y = df['CO2'] regr = linear_model.LinearRegression()
regr.fit(X, y) # 预测重量为 2300kg、排量为 1300ccm 的汽车的二氧化碳排放量: predictedCO2 = regr.predict([[2300, 1300]]) print(predictedCO2)
打印回归对象系数值
import pandas
from sklearn import linear_model df = pandas.read_csv("cars.csv") X = df[['Weight', 'Volume']]
y = df['CO2'] regr = linear_model.LinearRegression()
regr.fit(X, y) print(regr.coef_)
python 回归分析的更多相关文章
- python回归分析五部曲
Python回归分析五部曲(一)—简单线性回归 https://blog.csdn.net/jacky_zhuyuanlu/article/details/78878405?ref=myread Py ...
- Python回归分析五部曲(二)—多重线性回归
基础铺垫 多重线性回归(Multiple Linear Regression) 研究一个因变量与多个自变量间线性关系的方法 在实际工作中,因变量的变化往往受几个重要因素的影响,此时就需要用2个或2个以 ...
- Python回归分析五部曲(一)—简单线性回归
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析( ...
- Python回归分析五部曲(三)—一元非线性回归
(一)基础铺垫 一元非线性回归分析(Univariate Nonlinear Regression) 在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条曲线近似表示,则称为一元非线性回归 ...
- python回归分析
假设原函数由一个三角函数和一个线性项组成 import numpy as np import matplotlib.pyplot as plt %matplotlib inline def f(x): ...
- 个股与指数的回归分析(自带python ols 参数解读)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 利用Spark-mllab进行聚类,分类,回归分析的代码实现(python)
Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中 ...
- $用python玩点有趣的数据分析——一元线性回归分析实例
Refer:http://python.jobbole.com/81215/ 本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解.其原文是一篇英文的博客,讲的通俗易懂. 本文通过一个简单的例子 ...
- 回归分析特征选择(包括Stepwise算法) python 实现
# -*- coding: utf-8 -*-"""Created on Sat Aug 18 16:23:17 2018 @author: acadsoc"& ...
随机推荐
- Oracle 对 sql 的处理过程
当你发出一条 sql 语句交付 Oracle,在执行和获取结果前,Oracle 对此 sql 将进行几个步骤 的处理过程: 1.语法检查(syntax check) 检查此 sql 的拼写是否语法 ...
- 技能篇:git的简易教程
在学校,或许凭借一个人的力量就能负责整个项目的开发到上线.但是在公司,因为项目的复杂性和紧急性,一个项目的往往是由多个人实现,此时就有一个问题,代码提交和代码合并.git和svn,这篇文章来讲讲git ...
- QT: 如何移动和缩放一个无边框窗口
一个QT窗口如下可以做到无边框: Window { id: window //Designer 竟然不支持..., 设计模式时要注意 flags: Qt.FramelessWindowHint wid ...
- shell的图形排列
目录 一.矩形 二.直角三角形 三.倒直角三角形 四.靠右的直角三角形 五.等腰三角形 六.平行四边形 七.等腰梯形 八.菱形 九.可变动菱形 一.矩形 二.直角三角形 三.倒直角三角形 四.靠右的直 ...
- Apache解析漏洞
多解析特性 在Apache1.x,2.x中Apache 解析文件的规则是从右到左开始判断解析,如果后缀名为不可识别文件解析,就再往左判断.因此对于apache而言,一个test.php.qwea文件依 ...
- markdown的摘要测试
123456789 1 123456789 2 123456789 3 123456789 4 123456789 5 123456789 6 粗体 123456 划线 123456 斜体 12345 ...
- 基于Gitea搭建属于自己的Git服务
作者:IT王小二 博客:https://itwxe.com 一.搭建环境和前提 搭建环境: 操作系统:CentOS7.6 Docker版本:docker-ce-18.09.9 Lsky Pro版本:1 ...
- 初探 Python Flask+Jinja2 SSTI
初探 Python Flask+Jinja2 SSTI 文章首发安全客:https://www.anquanke.com/post/id/226900 SSTI简介 SSTI主要是因为某些语言的框架中 ...
- [总结&搬运]用户测试101
原文地址:User Testing 101 可用性测试是什么? 可用性测试是一种非常流行的用户研究方式.在可用性测试环节中,通常由主持人.参与者和测试任务三部分组成.主持人会发布测试任务,要求参与者使 ...
- 软件研发中也有5S 管理?
在精益生产中,价值流是贯穿生产全程的关键要素,标准化作业是实现生产线同步的关键工具,而生产现场的5S 管理则是管理一切生产要素的基础,所以我们将5S 称为精益的基础并不为过.5S 管理不仅可以应用到车 ...