题目大意

给出$n$, $p$, 求有多少长度为$n$的排列可以被分成三个上升子序列, 数量对$p$取模,

数据范围 $3 \leq n \leq 500$.

思路

首先让我们考虑如果有一个排列,如何判断这个排列合法,我可以考虑贪心,维护三个上升序列的末尾(最大值),从左到右依次将数插入序列,把这个数贪心的加到它可以加入的末尾的数最大的序列里.

因此考虑dp,定义$f[i][j][k]$表示现在有$i$个数,形成了三个上升子序列,其中最大的子序列末尾显然是第$i$大的数,第二大的子序列末尾是第$j$大的数,第三大的子序列末尾是第$k$大的数,这样的序列的数量,显然,这样枚举是不会重复的,转移的时候,考虑在这个序列末尾加数,考虑加的这个数在这$i$个数中的相对位置,设这个位置为$l$,有

$$

f[i][j][k] \rightarrow f[i+1][j][k],l=i+1 \\

f[i][j][k] \rightarrow f[i+1][l][k],j < l \leq i \\

f[i][j][k] \rightarrow f[i+1][j+1][l], k < l \leq j

$$

一个简单的$O(n^4)$dp

#define add(x, y) x = (x + y >= md) ? x + y - md : x + y
f[1][0][0] = 1;
for (int i = 1; i < n; ++i)
for (int j = 0; j < i; ++j)
for (int k = 0; k <= j; ++k)
if (f[i][j][k] > 0) {
int x = f[i][j][k];
for (int l = k + 1; l <= j; ++l)
add(f[i + 1][j + 1][l], x);
for (int l = j + 1; l <= i; ++l)
add(f[i + 1][l][k], x);
add(f[i + 1][j][k], x);
}

考虑优化,发现转移的都是一段,随便前缀和搞一搞就可以了

#define add(x, y) x = (x + y >= md) ? x + y - md : x + y
#define sub(x, y) x = (x - y < 0) ? x - y + md : x - y
f[1][0][0] = 1;
for (int i = 1; i < n; ++i) {
int cur = i & 1, nxt = cur ^ 1;
memset(f[nxt], 0, sizeof(f[nxt]));
memset(tag1, 0, sizeof(tag1));
memset(tag2, 0, sizeof(tag2));
for (int j = 0; j < i; ++j)
for (int k = 0; k <= j; ++k)
if (f[cur][j][k] > 0) {
int x = f[cur][j][k];
add(tag1[j + 1][k + 1], x);
sub(tag1[j + 1][j + 1], x);
add(tag2[j + 1][k], x);
sub(tag2[i + 1][k], x);
add(f[nxt][j][k], x);
}
for (int j = 0; j <= i; ++j)
for (int k = 1; k <= i; ++k)
add(tag1[j][k], tag1[j][k - 1]), add(tag2[k][j], tag2[k - 1][j]);
for (int j = 0; j <= i; ++j)
for (int k = 0; k <= j; ++k) {
add(f[nxt][j][k], tag1[j][k]);
add(f[nxt][j][k], tag2[j][k]);
}
}

复杂度$O(n^3)$.

2019.03.27【GDOI2019】模拟 T3的更多相关文章

  1. 2019.03.16 ZJOI2019模拟赛 解题报告

    得分: \(100+27+20=147\)(\(T1\)巨水,\(T2,T3\)只能写暴力分) \(T1\):深邃 比较套路的一眼题,显然是一个二分+贪心,感觉就是\(NOIP2018Day1T3\) ...

  2. 2019.03.19 ZJOI2019模拟赛 解题报告

    得分: \(100+10+45=155\)(\(T1\)又是水题,\(T2\)写暴力,\(T3\)大力\(STL\)乱搞) \(T1\):哈夫曼树 首先,根据题目中给出的式子,可以发现,我们要求的其实 ...

  3. 2019.03.02 ZJOI2019模拟赛 解题报告

    得分: \(10+0+40=50\)(\(T1\),\(T3\)只能写大暴力,\(T2\)压根不会) \(T1\):道路建造 应该是一道比较经典的容斥题,可惜比赛时没有看出来. 由于要求最后删一条边或 ...

  4. 2019.03.09 ZJOI2019模拟赛 解题报告

    得分: \(20+0+40=60\)(\(T1\)大暴力,\(T2\)分类讨论写挂,\(T3\)分类讨论\(40\)分) \(T1\):天空碎片 一道神仙数学题,貌似需要两次使用中国剩余定理. 反正不 ...

  5. 2019.03.13 ZJOI2019模拟赛 解题报告

    得分: \(55+12+10=77\)(\(T1\)误认为有可二分性,\(T2\)不小心把\(n\)开了\(char\),\(T3\)直接\(puts("0")\)水\(10\)分 ...

  6. 2019.03.14 ZJOI2019模拟赛 解题报告

    得分: \(100+100+0=200\)(\(T1\)在最后\(2\)分钟写了出来,\(T2\)在最后\(10\)分钟写了出来,反而\(T3\)写了\(4\)个小时爆\(0\)) \(T1\):风王 ...

  7. 2019.03.15 ZJOI2019模拟赛 解题报告

    得分: \(20+45+15=80\)(三题暴力全写挂...) \(T1\):Lyk Love painting 首先,不难想到二分答案然后\(DP\)验证. 设当前需验证的答案为\(x\),则一个暴 ...

  8. 2019.9.27 csp-s模拟测试53 反思总结

    这个起名方式居然还有后续?! 为什么起名不是连续的?! T1想了半天,搞出来了,结果数组开小[其实是没注意范围].T2概率期望直接跳,后来翻回来写发现自己整个理解错了期望的含义[何].T3错误想到赛道 ...

  9. 2019.7.27 NOIP模拟测试9 反思总结

    先来整理题目 T1题目大意:给出n个数字和一个质数作为模数,一个变量x初始值为1.进行m次操作,每次让x随机乘上n个数中的一个,问m次操作以后x的期望值. 答案一定可以用分数表示,输出分子乘分母逆元的 ...

随机推荐

  1. (6)java Spring Cloud+Spring boot+mybatis企业快速开发架构之SpringCloud-Spring Boot项目详细搭建步骤

    ​ 在 Spring Tools 4 for Eclipse 中依次选择 File->New->Maven Project,然后在出现的界面中按图所示增加相关信息. ​ <paren ...

  2. 如何写出安全又可靠的PHP脚本

    前言 咔咔目前所做的项目是一个saas系统,在开发新功能之后,需要为用户角色添加相应的权限,这时整个系统的所有用户都需要添加相应的权限. 因为以前系统的缺陷现在只能用脚本来处理这些工作,所以接下来咔咔 ...

  3. 【PHP数据结构】图的应用:最小生成树

    在学习了图的基本结构和遍历方式后,我们再继续地深入学习一些图的基本应用.在之前的数据结构中,我们并没接触太多的应用场景,但是图的这两类应用确是面试或考试中经常出现的问题,而且出现的频率还非常高,不得不 ...

  4. PHP方法的返回值

    不仅是PHP,大部分编程语言的函数或者叫方法,都可以用return来定义方法的返回值.从函数这个叫法来看,本身它就是一个计算操作,因此,计算总会有个结果,如果你在方法体中处理了结果,比如进行了持久化保 ...

  5. 执行:vim /etc/profile,提示:Command 'vim' not found, but can be installed with:

    root@uni-virtual-machine:/# vim /etc/profile Command 'vim' not found, but can be installed with: apt ...

  6. Java学习之随堂笔记系列——day01

    学习方法:听.问.敲.悟听:前提:上课要听懂,没有听懂可以及时的问.问:任何的问题都要及时的问.敲:重点内容.多写多练,只有写和练习才能发现新的问题,有问题就问.悟:举一反三.提升自己.今日内容:1. ...

  7. python3中文乱码解决方法

    解决方法: 修改pycharm配置: File->Settings->Editor->File encodings 把Global encoding设置成GBK即可

  8. Python - Context Manager 上下文管理器

    什么是上下文管理器 官方解释... 上下文管理器是一个对象 它定义了在执行 with 语句时要建立的运行时上下文 上下文管理器处理进入和退出所需的运行时上下文以执行代码块 上下文管理器通常使用 wit ...

  9. 一款简单实用的串口通讯框架(SerialIo)

    前言 大龄程序员失业状态,前几天面试了一家与医疗设备为主的公司并录取:因该单位涉及串口通讯方面技术,自己曾做过通讯相关的一些项目,涉及Socket的较多,也使用SuperSocket做过一些项目,入职 ...

  10. Java实现两数之和等于二十

    找出数组中两个数字之和为20的两个数 代码实现 public static void main(String[] args) { // TODO Auto-generated method stub ...