「CF516D」 Drazil and Morning Exercise

传送门

这个 \(f_i\) 显然可以通过树形 \(\texttt{DP}\) 直接求。

然后看到这种差值问题感觉就可以二分转换为判定性问题。

哦不好像本来就是判定性问题

显然我们可以考虑枚举最小值,然后检查其他点的合法情况,然后最后查最小值所在连通块大小即可。

这样做是 \(O(n^2\alpha(n))\) 的。

考虑优化。我们猜想这个 \(f\) 一定有性质。

注意到当最小值单调不降的时候,最大值一定也单调不降,也即是说,我们需要确定一个顺序使得我们可以用一个类似于双指针的过程来寻找答案。

有一个非常显然的结论:\(f\) 值最小的节点一定是直径的中点或中点左右的实际节点。

那么有这个东西之后我们可以推得:若以这个点为根,那么一定有 \(f_u<f_{fa_u}\),证明非常简单。

实际上实现的过程中,我们可以对最大值进行枚举,因为最大值的缺失一定不会影响当前连通块的连通性,相当于是以这个 \(f\) 值最小的点为根的某颗子树的叶节点,直接将子树大小减一即可。

然后这个题就完了。

/*---Author:HenryHuang---*/
/*---Never Settle---*/
/*---Never Enough---*/
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
typedef long long ll;
struct edge{
int to,nex,w;
}e[maxn<<1];
int head[maxn],cnt;
void add(int a,int b,int c){
e[++cnt]=(edge){b,head[a],c};
head[a]=cnt;
}
ll f[maxn],g1[maxn],g2[maxn],cho[maxn];
int ff[maxn];
void dfs1(int u,int fa){
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==fa) continue;
dfs1(v,u);
if(e[i].w+g1[v]>g1[u]){
g2[u]=g1[u];
g1[u]=e[i].w+g1[v];
cho[u]=v;
}
else g2[u]=max(g2[u],e[i].w+g1[v]);
}
}
void dfs2(int u,int fa){
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==fa) continue;
if(cho[u]==v) f[v]=max(f[u],g2[u])+e[i].w;
else f[v]=max(f[u],g1[u])+e[i].w;
dfs2(v,u);
}
}
void dfs3(int u,int fa){
ff[u]=fa;
for(int i=head[u];i;i=e[i].nex){
int v=e[i].to;
if(v==fa) continue;
dfs3(v,u);
}
}
int fa[maxn],siz[maxn],id[maxn];
int getfa(int t){
if(fa[t]==t) return fa[t];
return fa[t]=getfa(fa[t]);
}
void merge(int x,int y){
x=getfa(x),y=getfa(y);
fa[y]=x,siz[x]+=siz[y];
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int n;cin>>n;
for(int i=1;i<n;++i){
int a,b,c;cin>>a>>b>>c;
add(a,b,c),add(b,a,c);
}
dfs1(1,0);
dfs2(1,0);
for(int i=1;i<=n;++i) f[i]=max(f[i],g1[i]);
int mn=1;
for(int i=1;i<=n;++i)
if(f[i]<f[mn]) mn=i;
for(int i=1;i<=n;++i) id[i]=i;
sort(id+1,id+n+1,[&](int x,int y){return f[x]<f[y];});
dfs3(mn,0);
int q;cin>>q;
while(q--){
ll num;cin>>num;
for(int i=1;i<=n;++i) fa[i]=i,siz[i]=1;
int l=n,ans=0;
for(int r=n;r>=1;--r){
while(f[id[r]]-f[id[l]]<=num&&l>1){
--l;
if(f[id[r]]-f[id[l]]<=num){
for(int i=head[id[l]];i;i=e[i].nex){
int v=e[i].to;
if(v==ff[id[l]]) continue;
merge(id[l],v);
}
ans=max(ans,siz[getfa(id[l])]);
}
else{
++l;
break;
}
}
--siz[getfa(id[r])];
}
cout<<ans<<'\n';
}
return 0;
}

「CF516D」 Drazil and Morning Exercise的更多相关文章

  1. 【CF516D】Drazil and Morning Exercise

    题目 首先我们知道,在树上距离一个点最远的点一定是直径的两个端点之一 首先两遍\(\rm dfs\)把直径求出来,定义\(d(u)\)表示点\(u\)距离其最远点的距离,有了直径我们就能求出\(d\) ...

  2. 「译」JUnit 5 系列:条件测试

    原文地址:http://blog.codefx.org/libraries/junit-5-conditions/ 原文日期:08, May, 2016 译文首发:Linesh 的博客:「译」JUni ...

  3. 「译」JUnit 5 系列:扩展模型(Extension Model)

    原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...

  4. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  5. 「C++」理解智能指针

    维基百科上面对于「智能指针」是这样描述的: 智能指针(英语:Smart pointer)是一种抽象的数据类型.在程序设计中,它通常是经由类型模板(class template)来实做,借由模板(tem ...

  6. 「JavaScript」四种跨域方式详解

    超详细并且带 Demo 的 JavaScript 跨域指南来了! 本文基于你了解 JavaScript 的同源策略,并且了解使用跨域跨域的理由. 1. JSONP 首先要介绍的跨域方法必然是 JSON ...

  7. 「2014-5-31」Z-Stack - Modification of Zigbee Device Object for better network access management

    写一份赏心悦目的工程文档,是很困难的事情.若想写得完善,不仅得用对工具(use the right tools),注重文笔,还得投入大把时间,真心是一件难度颇高的事情.但,若是真写好了,也是善莫大焉: ...

  8. 「2014-3-18」multi-pattern string match using aho-corasick

    我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...

  9. 「2014-3-17」C pointer again …

    记录一个比较基础的东东-- C 语言的指针,一直让人又爱又恨,爱它的人觉得它既灵活又强大,恨它的人觉得它太过于灵活太过于强大以至于容易将人绕晕.最早接触 C 语言,还是在刚进入大学的时候,算起来有好些 ...

随机推荐

  1. 如何彻底禁止 macOS Big Sur 自动更新,去除更新标记和通知

    作者:gc(at)sysin.org,主页:www.sysin.org 请访问原文链接:https://sysin.org/article/Disable-macOS-Update/,查看最新版.原创 ...

  2. CVD和ALD薄膜沉积技术应用领域

    CVD和ALD薄膜沉积技术应用领域 显示 用于OLED.QD-OLED.甚至未来QLED的薄膜封装,通过有机/无机叠层结构的保护,水汽渗透率WVTR可降至10-5g/m2/day,保证OLED或者量子 ...

  3. 3D点云点云分割、目标检测、分类

    3D点云点云分割.目标检测.分类 原标题Deep Learning for 3D Point Clouds: A Survey 作者Yulan Guo, Hanyun Wang, Qingyong H ...

  4. 多级中间表示概述MLIR

    多级中间表示概述MLIR MLIR项目是一种构建可重用和可扩展的编译器基础结构的新颖方法.MLIR旨在解决软件碎片,改善异构硬件的编译,显着降低构建特定于域的编译器的成本以及帮助将现有编译器连接在一起 ...

  5. springboot 集成 elk 日志收集功能

    Lilishop 技术栈 官方公众号 & 开源不易,如有帮助请点Star 介绍 官网:https://pickmall.cn Lilishop 是一款Java开发,基于SpringBoot研发 ...

  6. 编译原理-文法(G)和语言(L)

    1.设文法G2(S): S->AB A->aA|a B->bB|b G2(S)产生的语言是什么? 解:L(G2)={ambn|m,n≥1} 2.请给出产生语言为{anbn|n≥1}的 ...

  7. 最小高度树Java版本(力扣)

    最小高度树 给定一个有序整数数组,元素各不相同且按升序排列,编写一个算法,创建一棵高度最小的二叉搜索树. 示例:给定有序数组: [-10,-3,0,5,9],一个可能的答案是:[0,-3,9,-10, ...

  8. 二、部署监控服务器-Zabbix Server

    二.部署监控服务器-Zabbix Server 1)源码安装Zabbix Server 多数源码包都是需要依赖包的,zabbix也- 样,源码编译前需要先安装相关依赖包. [root@zabbixse ...

  9. RobotFramework常用断言关键字

    变量或者关键字内容判断关键字 1.内容包含或者不包含:should contain . should not contain 与should contain x times *** Test Case ...

  10. 【渗透实战】记一次艰难的内网漫游第四期_蹭我WIFI?看我如何利用组合拳日进蹭网者内网

    /文章作者:Kali_MG1937 CSDN博客ID:ALDYS4 QQ:3496925334/ 内网漫游系列第三期:[渗透实战]记一次艰难的内网漫游第三期_我是如何利用APT攻击拿到内网最高权限的 ...