参考:An Overview of Encoding Techniques | Kaggle

Method 1: Label encoding 

给每个类别以一个数字label,作为分类。将类别映射到自然数数值空间上

from sklearn.preprocessing import LabelEncoder
train=pd.DataFrame()
label=LabelEncoder()
for c in X.columns:
if(X[c].dtype=='object'):
train[c]=label.fit_transform(X[c])
else:
train[c]=X[c]

Method 2 : One hot encoding 

即独热码,每一个category对应特征向量中的一位,对应位置是否为1判定是否为该类。

可以使用pd.get_dummies()或sklearn.preprocessing中OneHotEncoder

from sklearn.preprocessing import OneHotEncoder
one=OneHotEncoder(
one.fit(X)
train=one.transform(X)

Method 3 : Feature Hashing/Hashing Trick

一个“one hot encoding style” 的编码方式,将数据编入特定维数的散度矩阵中,降维中使用了hash方法。

from sklearn.feature_extraction import FeatureHasher
X_train_hash=X.copy()
for c in X.columns:
X_train_hash[c]=X[c].astype('str')
hashing=FeatureHasher(input_type='string')
train=hashing.transform(X_train_hash.values)

Method 4 :Encoding categories with dataset statistics

尝试为模型提供较低维的每个类别的表示,且其中类似的类别的表示相近。 最简单的方法是将每个类别替换为我们在数据集中看到它的次数,即用出现频率作为他们的embedding。

X_train_stat=X.copy()
for c in X_train_stat.columns:
if(X_train_stat[c].dtype=='object'):
X_train_stat[c]=X_train_stat[c].astype('category')
counts=X_train_stat[c].value_counts()
counts=counts.sort_index()
counts=counts.fillna(0)
counts += np.random.rand(len(counts))/1000
X_train_stat[c].cat.categories=counts

对于循环出现的特征,例如日期,星期等,常用sin\cos将其转为二维空间中的数据。这是基于“循环”的性质,类似于对圆进行分割。

X_train_cyclic=X.copy()
columns=['day','month']
for col in columns:
X_train_cyclic[col+'_sin']=np.sin((2*np.pi*X_train_cyclic[col])/max(X_train_cyclic[col]))
X_train_cyclic[col+'_cos']=np.cos((2*np.pi*X_train_cyclic[col])/max(X_train_cyclic[col]))
X_train_cyclic=X_train_cyclic.drop(columns,axis=1)
one=OneHotEncoder()
one.fit(X_train_cyclic)
train=one.transform(X_train_cyclic)

Method 5 : Target encoding 

Target encoding 通过目标数据对类别变量进行编码,使用目标对应概率或平均概率替换该类别,即出现频次相近的被视为同一类(大城市,热门项等)。这个方法比较依赖训练集与测试集合的分布,要求他们数据分布一致。另外,这种方法可能会导致过拟合。

                     

X_target=df_train.copy()
X_target['day']=X_target['day'].astype('object')
X_target['month']=X_target['month'].astype('object')
for col in X_target.columns:
if (X_target[col].dtype=='object'):
target= dict ( X_target.groupby(col)['target'].agg('sum')/X_target.groupby(col)['target'].agg('count'))
X_target[col]=X_target[col].replace(target).values

为了减轻过拟合可能带来的影响,可以使用K-Fold Validation ,每次对一份样本进行目标编码时,使用的都是其他K-1份数据之中的数据。

X['target']=y
cols=X.drop(['target','id'],axis=1).columns
%%time
X_fold=X.copy()
X_fold[['ord_0','day','month']]=X_fold[['ord_0','day','month']].astype('object')
X_fold[['bin_3','bin_4']]=X_fold[['bin_3','bin_4']].replace({'Y':1,'N':0,'T':1,"F":0})
kf = KFold(n_splits = 5, shuffle = False, random_state=2019)
for train_ind,val_ind in kf.split(X):
for col in cols:
if(X_fold[col].dtype=='object'):
replaced=dict(X.iloc[train_ind][[col,'target']].groupby(col)['target'].mean())
X_fold.loc[val_ind,col]=X_fold.iloc[val_ind][col].replace(replaced).values

此外,在对特征进行编码前也需要进行特征种类的区分。常分为:

  • 0-1数值:只有两种取值,可映射到0,1
  • 类别数值:多个类别,这也是最常见的数据。
  • 时序数据:时间戳等,隐含了顺序信息,可以反应趋势。

[特征工程] encoding的更多相关文章

  1. 机器学习-特征工程-Missing value和Category encoding

    好了,大家现在进入到机器学习中的一块核心部分了,那就是特征工程,洋文叫做Feature Engineering.实际在机器学习的应用中,真正用于算法的结构分析和部署的工作只占很少的一部分,相反,用于特 ...

  2. 特征工程(Feature Engineering)

    一.什么是特征工程? "Feature engineering is the process of transforming raw data into features that bett ...

  3. 机器学习-特征工程-Feature generation 和 Feature selection

    概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些 ...

  4. 【Python数据挖掘】第六篇--特征工程

    一.Standardization 方法一:StandardScaler from sklearn.preprocessing import StandardScaler sds = Standard ...

  5. AI学习笔记:特征工程

    一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. &quo ...

  6. Alink漫谈(十) :特征工程 之 特征哈希/标准化缩放

    Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scali ...

  7. 使用sklearn做单机特征工程

    目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺 ...

  8. 特征工程(Feature Enginnering)学习记要

     最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feature Selection)和特征抓取(Feature Extraction).这里记录一些要点 ...

  9. 【转】使用sklearn做单机特征工程

    这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 ...

随机推荐

  1. java自定义序列化

    自定义序列化 1.问题引出 在某些情况下,我们可能不想对于一个对象的所有field进行序列化,例如我们银行信息中的设计账户信息的field,我们不需要进行序列化,或者有些field本省就没有实现Ser ...

  2. Python--基本数据类型(可变/不可变类型)

    目录 Python--基本数据类型 1.整型 int 2.浮点型 float 3.字符串 str 字符串格式 字符串嵌套 4.列表 list 列表元素的下标位置 索引和切片:字符串,列表常用 5.字典 ...

  3. SpringCloud升级之路2020.0.x版-38. 实现自定义 WebClient 的 NamedContextFactory

    本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 实现 WeClient 的 NamedContextFactory 我们要实现的是不同微服 ...

  4. 多线程合集(二)---异步的那些事,async和await原理抛析

    引言 在c#中,异步的async和await原理,以及运行机制,可以说是老生常谈,经常在各个群里看到有在讨论这个的,而且网上看到的也只是对异步状态机的一些讲解,甚至很多人说异步状态机的时候,他们说的是 ...

  5. Ubuntu压缩和解压缩

    1.常用的压缩格式 tar tar.bz2 tar.gz 2.gzip压缩 gzip xxx //压缩 gzip -d xxx.gz //解压缩 gzip对文件夹的压缩 gzip -r xxx //文 ...

  6. vue的常用指令

    https://www.bootcdn.cn/ 前端资源库 <!-- 常用内置指令 v:text : 更新元素的 textContent v-html : 更新元素的 innerHTML v-i ...

  7. jmeter中执行kafka topic指令

    前置条件 kafka版本:2.2.1 jmeter版本:5.3 插件:ApacheJMeter_ssh-1.2.0.jar 1.拷贝 ApacheJMeter_ssh-1.2.0.jar 到/lib/ ...

  8. HDU 5322 Hope

    HDU 5322 Hope 考虑 $ dp[n] $ 表示 长度为 $ n $ 的所有排列的答案. 首先,对于一个排列来说,如果最大值在 $ i $ 位置,那么前 $ i - 1 $ 个数必然与 $ ...

  9. Codeforces 538G - Berserk Robot(乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 一道很神的乱搞题 %%% 首先注意到如果直接去做,横纵坐标有关联,不好搞.这里有一个非常套路的技巧--坐标轴旋转,我们不妨将整个坐标系旋转 ...

  10. 49-Reverse Linked List II

    Reverse Linked List II My Submissions QuestionEditorial Solution Total Accepted: 70579 Total Submiss ...