[NOIp2017]宝藏 题解
非常巧妙的 \(O(n^23^n)\) 做法。
题目的本质是要求一棵生成树,使得其每条边的长度与这条边的起点深度乘积的和最小。
我们使用状压 DP,考虑到当前状态与已经打通的点和深度有关,不妨设 \(f(S,x)\) 为当前所打通点集合为 \(S\),且当前树深度为 \(x\) 时的最小花费。状态转移方程
\]
翻译成人话就是,枚举当前状态的真子集,作为第 \(x-1\) 层的状态,将真子集的补集作为当前 \(x\) 层的点,找到向第 \(x-1\) 层连边的最小花费之和(当然,还要保证 \(S_0\) 可以扩展到当前状态)。
初始:\(\forall 1\leq i\leq n,f(\{i\},0)=0\),其余为正无穷。目标:\(\min\limits_{1\leq i\leq n}\{f(U,i)\}\),其中 \(U\) 为全集。
其他需要注意的点:
- 预处理出每个点能拓展出的集合。
- 为方便位运算,将所有点标号为 \(0,\dots,n-1\)。
现在分析一下复杂度。两两点枚举连边复杂度为 \(O(n^2)\),枚举所有子集的子集复杂度为 \(\sum\limits_{k=0}^{n}C^k_n2^k=(1+2)^n=3^n\)(二项式定理),于是总复杂度 \(O(n^23^n)\)。
(还在题解区发现 \(O(n3^n)\) 做法的,太巨了
#include <bits/stdc++.h>
using namespace std;
const int N=12,M=1<<N,INF=0x3f3f3f3f;
int n,m,d[N][N],f[M][N],g[M];
int main()
{
scanf("%d%d",&n,&m);
memset(d,INF,sizeof(d));
for(int i=0;i<n;++i) d[i][i]=0;
for(int i=1,a,b,c;i<=m;++i)
{
scanf("%d%d%d",&a,&b,&c);
a--,b--; d[a][b]=d[b][a]=min(d[a][b],c);
}
for(int i=1;i<1<<n;++i)
for(int j=0;j<n;++j)
if(i>>j&1)
for(int k=0;k<n;++k)
if(d[j][k]!=INF)
g[i]|=1<<k; //预处理可扩展集合
memset(f,INF,sizeof(f));
for(int i=0;i<n;++i) f[1<<i][0]=0;
for(int i=1;i<1<<n;++i)
for(int j=i-1;j;j=(j-1)&i) //枚举真子集
if((g[j]&i)==i)
{
int cpl=i^j,cost=0; //cpl即是补集
for(int u=0;u<n;++u) //对于每个点,求最小
if(cpl>>u&1)
{
int tmp=INF;
for(int v=0;v<n;++v)
if(j>>v&1)
tmp=min(tmp,d[u][v]);
cost+=tmp;
}
for(int k=1;k<n;++k) f[i][k]=min(f[i][k],f[j][k-1]+k*cost); //更新
}
printf("%d",*min_element(f[(1<<n)-1],f[(1<<n)-1]+n));
return 0;
}
[NOIp2017]宝藏 题解的更多相关文章
- NOIP2017 宝藏 题解报告【状压dp】
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是 ...
- [NOIP2017]宝藏 状压DP
[NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...
- 【比赛】NOIP2017 宝藏
这道题考试的时候就骗了部分分.其实一眼看过去,n范围12,就知道是状压,但是不知道怎么状压,想了5分钟想不出来就枪毙了状压,与AC再见了. 现在写的是状压搜索,其实算是哈希搜索,感觉状压DP理解不了啊 ...
- [NOIP2017]宝藏 子集DP
题面:[NOIP2017]宝藏 题面: 首先我们观察到,如果直接DP,因为每次转移的代价受上一个状态到底选了哪些边的影响,因此无法直接转移. 所以我们考虑分层DP,即每次强制现在加入的点的距离为k(可 ...
- NOIP2017宝藏 [搜索/状压dp]
NOIP2017 宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘 ...
- 【NOIP2017】宝藏 题解(状压DP)
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中 ...
- NOIP2017[提高组] 宝藏 题解
解析 我们观察范围可以发现n非常的小,(一般来说不是搜索就是状压dp)所以说对于这题我们可以用记忆化搜索或者dp,我们发现起点不同那么最终答案也就不同,也就是说答案是跟起点有关的,于是我们便可以想到去 ...
- NOIP2017 - 宝藏
LibreOJ链接 Description 给出一个\(n(n\leq12)\)个点\(m(m\leq1000)\)条边的带权无向图,求该图的一棵生成树,使得其边权×该边距根的深度之和最小. Solu ...
- NOIP2017 列队 题解报告【56行线段树】
题目描述 Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有n \times mn×m名学生,方阵的行数 ...
随机推荐
- day05对象和类
day06作业: 第一题:分析以下需求,并用代码实现 手机类Phone 属性: 品牌brand 价格price 行为: 打电话call() 发短信sendMessage() 玩游戏playGame() ...
- mybatis之模糊查询
1.编写接口 List<User> getUserLike(String value); 2.编写映射文件 <select id="getUserLike" re ...
- MySQL分页查询limit踩坑记
1 问题背景 线上有一个批处理任务,会批量读取昨日的数据,经过一系列加工后,插入到今日的表中.表结构如下: 1 CREATE TABLE `detail_yyyyMMdd` ( 2 `id` bigi ...
- 【linux】驱动-12-并发与竞态
目录 前言 12. 并发&竞态 12.1 并发&竞态概念 12.2 竞态解决方法 12.3 原子 12.3.1 原子介绍 12.3.2 原子操作步骤 12.3.3 原子 API 12. ...
- PL/SQL连不上,报 ORA-12170:TNS 连接超时
排错步骤: 1.查看网络是否通畅 打开cmd, ping 数据库IP 2. 查看端口是否通畅 打开cmd,tnsping 数据库IP 如果piing不通,可能是防火墙问题 3.检查防火墙状态 #ser ...
- YOLO V4 :win10+cpu环境的体验
1.前言 Yolo V3已经体验了,接下来是V4版本. 关于V4版本,学术界褒贬不一.从工业界实际应用角度看,V4做了不少的优化,精度提升了10%,速度提升了12%.详细参见: <如何评价新出的 ...
- 关于equals()和hashcode()的一些约定
本文章主要讨论和回答一下几个问题: equals()的四大特性 equals()和hashcode()之间的关系,为什么我们经常说这两个方法要么都重写,要么都不重写? HashMap.HashSet等 ...
- Pytest学习笔记8-参数化
前言 我们在实际自动化测试中,某些测试用例是无法通过一组测试数据来达到验证效果的,所以需要通过参数化来传递多组数据 在unittest中,我们可以使用第三方库parameterized来对数据进行参数 ...
- 如何在国产龙芯架构平台上运行c/c++、java、nodejs等编程语言
高能预警:本文内容过于硬核,涉及编译器原理.cpu指令集.机器码.编程语言原理.跨平台原理等计算机专业基础知识,建议具有c.c++.java.nodejs等多种编程语言开发能力,且实战经验丰富的资深开 ...
- mapboxgl绘制3D线
最近遇到个需求,使用mapboxgl绘制行政区划图层,要求把行政区划拔高做出立体效果,以便突出显示. 拿到这个需求后,感觉很简单呀,只需要用fill-extrusion方式绘制就可以啦,实现出来是这个 ...