Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition)

基本

酉变换

一维的变换:

\[\mathbf{t} = \mathbf{A} \mathbf{f}, \\
\mathbf{f} = \mathbf{A}^{H} \mathbf{t}, \\
\mathbf{A}^H = {\mathbf{A}^*}^{T}, \mathbf{A}^H\mathbf{A} = \mathbf{I}.
\]

以及二维的变换:

\[\mathbf{T} = \mathbf{A} \mathbf{F} \mathbf{B}^T, \\
\mathbf{F} = \mathbf{A}^H \mathbf{T} \mathbf{B}^*, \\
\mathbf{A}^H\mathbf{A=I}, \mathbf{B}^{T}\mathbf{B}^* =\mathbf{I}.
\]

以一维的为例, 实际上就是

\[t_u = \sum_{x = 0}^{N-1} f_x s(x, u) = \mathbf{f}^T \mathbf{s}_u, u=0,1,\cdots, N-1,\\
\mathbf{s}_u = [s(0, u), s(1, u), \cdots, s(N-1, u)]^T.
\]

\[\mathbf{A} = [\mathbf{s}_0, \cdots, \mathbf{s}_{N-1}]^{T}.
\]

注: 下面假设:\(N=2^n\).

WALSH-HADAMARD TRANSFORMS

\[s(x, u) = \frac{1}{\sqrt{N}} (-1)^{\sum_{i=0}^{n-1}b_i(x)b_i(u)},
\]

注意, 这里\(b_i(u)\)表示\(u\)的二进制的第\(i\)位, 比如\(4\)的二进制为\(100\), 此时\(b_0 = 0, b_2=1\).

变换矩阵可以通过更通俗易懂的方式搭建:

\[\mathbf{A}_W = \frac{1}{\sqrt{N}} \mathbf{H}_N, \\
\mathbf{H}_{2N} =
\left [
\begin{array}{cc}
\mathbf{H}_N & \mathbf{H}_N \\
\mathbf{H}_N & -\mathbf{H}_N \\
\end{array}
\right ], \\
\mathbf{H}_{2} =
\left [
\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\end{array}
\right ].
\]

sequency-ordered WHT

\[\mathbf{H}_{4} =
\left [
\begin{array}{cc}
1 & 1 & 1 & 1\\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1\\
1 & -1 & -1 & 1 \\
\end{array}
\right ].
\]

可以发现, 第1行(\(u=0, 1, 2, 3\))的符号变换最快的(类似与DFT中的频率的概念), 故sequency-order, 即按照符号变换快慢的递增排列, 其公式如下:

\[s(x, u) = \frac{1}{\sqrt{N}}(-1)^{\sum_{i=0}^{n-1}b_i(x)p_i(u)}, \\
p_0 (u) = b_{n-1}(u), \\
p_{n-1-i}(u) = b_i(u) + b_{i+1}(u), \quad i = 0, \cdots, n-2.
\]

记\(\mathbf{H}_{W'}\)为sequency-order的, 则 \(\mathbf{H}_{W'}\)的第\(u\)行与\(\mathbf{H}_{W}\)的第\(v\)行存在如下的关系:

  1. 考虑\(n\)bit的二进制, 则
\[u: (u_{n-1}u_{n-2}\cdots u_0),\\
v: (v_{n-1}v_{n-2}\cdots v_0).
\]
  1. 将\(u\)转换成其gray code格式
\[g_i = u_i \oplus u_{i+1}, \quad i=0, \cdots, n-2\\
g_{n-1} = s_{n-1}.
\]

其中\(\oplus\)表示异或操作.

3. 对\(g\)进行bit-reverse, 即\(g_i, g_{n-1-i}\)调换位置, 则

\[v_i = g_{n-1-i}.
\]

举个例子, 假设\(n=3\), \(u=4 = (100)_2\), 则\(g = (110)_2\), \(v=(011)_2 = 3\). 即\(H_8'\)的第4行为\(H_8\)的第3行(注意均从0开始计数).

proof:

\[\begin{array}{ll}
p_{n-1-i}(u)
&= b_i(u) + b_{i+1}(u) \\
&\Leftrightarrow b_i(g) \\
&= b_{n-1-i}(v).
\end{array}
\]

注意\(\Leftrightarrow\), 是这样的, \(b_i + b_{i+1}\)仅有(0, 1, 2)三种可能性, 而\((-1)^1=-1\)否则为1,而\(b_i(g)=1\)恰好是\(b_i(u) + b_{i+1}(u) = 1\) (根据异或的定义可得), 故可能等价替换.

\[p_0(u) = b_0(v),
\]

是显然的, 证毕.

下图便是按照sequency增序的表示.

SLANT TRANSFORM

\[\mathbf{A}_{SI} = \frac{1}{\sqrt{N}}\mathbf{S}_N, \\
\mathbf{S}_{N} =
\left [
\begin{array}{cccccc}
1 & 0 & \mathbf{0} & 1 & 0 & \mathbf{0} \\
a_N & b_N & \mathbf{0} & -a_N & b_N & \mathbf{0} \\
0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf{I}_{(N/2)-2} \\
0 & 1 & \mathbf{0} & 0 & -1 & \mathbf{0} \\
-b_N & a_N & \mathbf{0} & b_N & a_N & \mathbf{0} \\
0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf-{I}_{(N/2)-2} \\
\end{array}
\right ]
\left [
\begin{array}{cc}
\mathbf{S}_{N/2} & \mathbf{0} \\
\mathbf{0} & \mathbf{S}_{N/2} \\
\end{array}
\right ], \\
\mathbf{S}_2 =
\left [
\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\end{array}
\right ], \\
a_N = [\frac{3N^2}{4(N^2-1)}]^{1/2}, \\
b_N = [\frac{N^2-4}{4(N^2-1)}]^{1/2}.
\]

标准正交性质是容易证明的, 需要特别注意的是, 改变换矩阵是非对称的, 所以逆变换是需要计算逆的\(A_{SI}^{-1}\).

Haar Transform

Haar 是一种小波变换, 这里简单写一下.

\[s(x, u) = \frac{1}{\sqrt{N}} h_u(x / N), \quad x= 0,1,\cdots, N-1, \\
u = 2^p + q, \\
h_u(x) =
\left \{
\begin{array}{ll}
1 & u=0 \: \text{and} \: 0 \le x < 1, \\
2^{p/2} & u > 0 \text{and} \: q/2^p < (q + 0.5)/2^p, \\
-2^{p/2} & u > 0 \text{and} \: (q+0.5)/2^p < (q + 1)/2^p, \\
0 & \text{otherwise}.
\end{array}
\right .
\]

WHT, SLANT, Haar的更多相关文章

  1. 特征检测之Haar

    Harr特征, 主要用于人脸检测,可以参考我的博文 基于MATLAB的adaboost级联形式的人脸检测实现 1 harr特征的原理 2 haar特征的计算 3 haar特征的应用

  2. 浅谈人脸检测之Haar分类器方法

    我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...

  3. OpenCv haar+SVM训练的xml检测人头位置

    注意:opencv-2.4.10 #include "stdio.h"#include "string.h"#include "iostream&qu ...

  4. opencv - haar人脸特征的训练

    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...

  5. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  6. Haar特征

    转自:http://blog.csdn.net/carson2005/article/details/8094699 Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征 ...

  7. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

  8. Looksery Cup 2015 D. Haar Features 暴力

    D. Haar Features Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/549/prob ...

  9. 目标检测的图像特征提取之(三)Haar特征

    1.Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征. Haar特征分为三类:边缘特征.线性 ...

随机推荐

  1. linux 实用指令压缩和解压类

    linux 实用指令压缩和解压类 目录 linux 实用指令压缩和解压类 gzip/gunzip指令(不常用) zip/unzip指令 tar指令(常用) gzip/gunzip指令(不常用) 说明 ...

  2. 商业爬虫学习笔记day2

    1. get传参 (1)url中包含中文报错解决方法 urllib.request.quote("包含中文的url", safe = "string.printtable ...

  3. 从源码看RequestMappingHandlerMapping的注册与发现

    1.问题的产生 日常开发中,大多数的API层中@Controller注解和@RequestMapping注解都会被使用在其中,但是为什么标注了@Controller和@RequestMapping注解 ...

  4. java加密方式

    加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...

  5. Linux学习 - shell脚本执行

    一.shell概述 shell是一个命令行解释器,为用户提供一个向Linux内核发送请求以便运行程序的界面系统级程序,用户可以用shell来启动.挂起.停止甚至是编写一些程序 shell还是一个功能强 ...

  6. ligerUI 关闭父弹窗JS报错问题 解决方法

    1:调用父窗口某一个文件框,获取焦点, parent.window.document.getElementById("roleName").focus(); 2:关闭父窗口pare ...

  7. Zookeeper的选举算法和脑裂问题

    ZK介绍 ZK = zookeeper ZK是微服务解决方案中拥有服务注册发现最为核心的环境,是微服务的基石.作为服务注册发现模块,并不是只有ZK一种产品,目前得到行业认可的还有:Eureka.Con ...

  8. Spring Boot发布war包流程

    1.修改web model的pom.xml <packaging>war</packaging> SpringBoot默认发布的都是jar,因此要修改默认的打包方式jar为wa ...

  9. springmvc中如何自定义类型转换器

    package com.hope.utils;import org.springframework.core.convert.converter.Converter;import org.spring ...

  10. 通过js禁用浏览器的回退事件

    js代码: <script> history.pushState(null, null, document.URL); window.addEventListener('popstate' ...