Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition)

基本

酉变换

一维的变换:

\[\mathbf{t} = \mathbf{A} \mathbf{f}, \\
\mathbf{f} = \mathbf{A}^{H} \mathbf{t}, \\
\mathbf{A}^H = {\mathbf{A}^*}^{T}, \mathbf{A}^H\mathbf{A} = \mathbf{I}.
\]

以及二维的变换:

\[\mathbf{T} = \mathbf{A} \mathbf{F} \mathbf{B}^T, \\
\mathbf{F} = \mathbf{A}^H \mathbf{T} \mathbf{B}^*, \\
\mathbf{A}^H\mathbf{A=I}, \mathbf{B}^{T}\mathbf{B}^* =\mathbf{I}.
\]

以一维的为例, 实际上就是

\[t_u = \sum_{x = 0}^{N-1} f_x s(x, u) = \mathbf{f}^T \mathbf{s}_u, u=0,1,\cdots, N-1,\\
\mathbf{s}_u = [s(0, u), s(1, u), \cdots, s(N-1, u)]^T.
\]

\[\mathbf{A} = [\mathbf{s}_0, \cdots, \mathbf{s}_{N-1}]^{T}.
\]

注: 下面假设:\(N=2^n\).

WALSH-HADAMARD TRANSFORMS

\[s(x, u) = \frac{1}{\sqrt{N}} (-1)^{\sum_{i=0}^{n-1}b_i(x)b_i(u)},
\]

注意, 这里\(b_i(u)\)表示\(u\)的二进制的第\(i\)位, 比如\(4\)的二进制为\(100\), 此时\(b_0 = 0, b_2=1\).

变换矩阵可以通过更通俗易懂的方式搭建:

\[\mathbf{A}_W = \frac{1}{\sqrt{N}} \mathbf{H}_N, \\
\mathbf{H}_{2N} =
\left [
\begin{array}{cc}
\mathbf{H}_N & \mathbf{H}_N \\
\mathbf{H}_N & -\mathbf{H}_N \\
\end{array}
\right ], \\
\mathbf{H}_{2} =
\left [
\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\end{array}
\right ].
\]

sequency-ordered WHT

\[\mathbf{H}_{4} =
\left [
\begin{array}{cc}
1 & 1 & 1 & 1\\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1\\
1 & -1 & -1 & 1 \\
\end{array}
\right ].
\]

可以发现, 第1行(\(u=0, 1, 2, 3\))的符号变换最快的(类似与DFT中的频率的概念), 故sequency-order, 即按照符号变换快慢的递增排列, 其公式如下:

\[s(x, u) = \frac{1}{\sqrt{N}}(-1)^{\sum_{i=0}^{n-1}b_i(x)p_i(u)}, \\
p_0 (u) = b_{n-1}(u), \\
p_{n-1-i}(u) = b_i(u) + b_{i+1}(u), \quad i = 0, \cdots, n-2.
\]

记\(\mathbf{H}_{W'}\)为sequency-order的, 则 \(\mathbf{H}_{W'}\)的第\(u\)行与\(\mathbf{H}_{W}\)的第\(v\)行存在如下的关系:

  1. 考虑\(n\)bit的二进制, 则
\[u: (u_{n-1}u_{n-2}\cdots u_0),\\
v: (v_{n-1}v_{n-2}\cdots v_0).
\]
  1. 将\(u\)转换成其gray code格式
\[g_i = u_i \oplus u_{i+1}, \quad i=0, \cdots, n-2\\
g_{n-1} = s_{n-1}.
\]

其中\(\oplus\)表示异或操作.

3. 对\(g\)进行bit-reverse, 即\(g_i, g_{n-1-i}\)调换位置, 则

\[v_i = g_{n-1-i}.
\]

举个例子, 假设\(n=3\), \(u=4 = (100)_2\), 则\(g = (110)_2\), \(v=(011)_2 = 3\). 即\(H_8'\)的第4行为\(H_8\)的第3行(注意均从0开始计数).

proof:

\[\begin{array}{ll}
p_{n-1-i}(u)
&= b_i(u) + b_{i+1}(u) \\
&\Leftrightarrow b_i(g) \\
&= b_{n-1-i}(v).
\end{array}
\]

注意\(\Leftrightarrow\), 是这样的, \(b_i + b_{i+1}\)仅有(0, 1, 2)三种可能性, 而\((-1)^1=-1\)否则为1,而\(b_i(g)=1\)恰好是\(b_i(u) + b_{i+1}(u) = 1\) (根据异或的定义可得), 故可能等价替换.

\[p_0(u) = b_0(v),
\]

是显然的, 证毕.

下图便是按照sequency增序的表示.

SLANT TRANSFORM

\[\mathbf{A}_{SI} = \frac{1}{\sqrt{N}}\mathbf{S}_N, \\
\mathbf{S}_{N} =
\left [
\begin{array}{cccccc}
1 & 0 & \mathbf{0} & 1 & 0 & \mathbf{0} \\
a_N & b_N & \mathbf{0} & -a_N & b_N & \mathbf{0} \\
0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf{I}_{(N/2)-2} \\
0 & 1 & \mathbf{0} & 0 & -1 & \mathbf{0} \\
-b_N & a_N & \mathbf{0} & b_N & a_N & \mathbf{0} \\
0 & 0 & \mathbf{I}_{(N/2)-2} & 0 & 0 & \mathbf-{I}_{(N/2)-2} \\
\end{array}
\right ]
\left [
\begin{array}{cc}
\mathbf{S}_{N/2} & \mathbf{0} \\
\mathbf{0} & \mathbf{S}_{N/2} \\
\end{array}
\right ], \\
\mathbf{S}_2 =
\left [
\begin{array}{cc}
1 & 1 \\
1 & -1 \\
\end{array}
\right ], \\
a_N = [\frac{3N^2}{4(N^2-1)}]^{1/2}, \\
b_N = [\frac{N^2-4}{4(N^2-1)}]^{1/2}.
\]

标准正交性质是容易证明的, 需要特别注意的是, 改变换矩阵是非对称的, 所以逆变换是需要计算逆的\(A_{SI}^{-1}\).

Haar Transform

Haar 是一种小波变换, 这里简单写一下.

\[s(x, u) = \frac{1}{\sqrt{N}} h_u(x / N), \quad x= 0,1,\cdots, N-1, \\
u = 2^p + q, \\
h_u(x) =
\left \{
\begin{array}{ll}
1 & u=0 \: \text{and} \: 0 \le x < 1, \\
2^{p/2} & u > 0 \text{and} \: q/2^p < (q + 0.5)/2^p, \\
-2^{p/2} & u > 0 \text{and} \: (q+0.5)/2^p < (q + 1)/2^p, \\
0 & \text{otherwise}.
\end{array}
\right .
\]

WHT, SLANT, Haar的更多相关文章

  1. 特征检测之Haar

    Harr特征, 主要用于人脸检测,可以参考我的博文 基于MATLAB的adaboost级联形式的人脸检测实现 1 harr特征的原理 2 haar特征的计算 3 haar特征的应用

  2. 浅谈人脸检测之Haar分类器方法

    我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...

  3. OpenCv haar+SVM训练的xml检测人头位置

    注意:opencv-2.4.10 #include "stdio.h"#include "string.h"#include "iostream&qu ...

  4. opencv - haar人脸特征的训练

    step 1: 把正样品,负样品,opencv_createsamples,opencv_haartraining放到一个文件夹下面,利于后面的运行.step 2: 生成正负样品的描述文件 正样品描述 ...

  5. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  6. Haar特征

    转自:http://blog.csdn.net/carson2005/article/details/8094699 Haar-like特征,即很多人常说的Haar特征,是计算机视觉领域一种常用的特征 ...

  7. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

  8. Looksery Cup 2015 D. Haar Features 暴力

    D. Haar Features Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/549/prob ...

  9. 目标检测的图像特征提取之(三)Haar特征

    1.Haar-like特征 Haar-like特征最早是由Papageorgiou等应用于人脸表示,Viola和Jones在此基础上,使用3种类型4种形式的特征. Haar特征分为三类:边缘特征.线性 ...

随机推荐

  1. Hadoop入门 概念

    Hadoop是分布式系统基础架构,通常指Hadoop生态圈 主要解决 1.海量数据的存储 2.海量数据的分析计算 优势 高可靠性:Hadoop底层维护多个数据副本,即使Hadoop某个计算元素或存储出 ...

  2. LeetCode数组中重复的数字

    LeetCode 数组中重复的数字 题目描述 在一个长度为 n 的数组 nums 里的所有数字都在 0~n-1 的范围内.数组中某些数字是重复的,但不知道有几个数字重复了,也不知道每个数字重复了几次. ...

  3. A Child's History of England.4

    Still, the Britons would not yield. They rose again and again, and died by thousands, sword in hand. ...

  4. 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》

    论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作 ...

  5. ORACLE 按逗号拆分字符串为多行

    with t as (select '1,2,3,10,11,12' a from dual) select substr(a, decode(level - 1, 0, 0, instr(a, ', ...

  6. Mysql百万级数据索引重新排序

    参考https://blog.csdn.net/pengshuai007/article/details/86021689中思路解决自增id重排 方式一 alter table `table_name ...

  7. OpenStack之十: 安装dashboard

    官网地址 https://docs.openstack.org/horizon/stein/install/install-rdo.html #:安装包 [root@cobbler ~]# yum i ...

  8. Flask + Nginx + uwsgi 部署过程

    一.安装Flask 1.itsdangerous tar xvf itsdangerous-0.23.tar.gz cd itsdangerous-0.23/ python setup.py inst ...

  9. 【Java基础】Java中new对象的过程

    序言 联系我上次写的关于Java内存的文章,对象访问在 Java 语言中无处不在,是最普通的程序行为,但即使是最简单的访问,也会却涉及 Java 栈.Java 堆.方法区这三个最重要内存区域之间的关联 ...

  10. Leetcode 78题-子集

    LeetCode 78 网上已经又很多解这题的博客了,在这只是我自己的解题思路和自己的代码: 先贴上原题: 我的思路: 我做题的喜欢在本子或别处做写几个示例,以此来总结规律:下图就是我从空数组到数组长 ...