CF280C Game on tree(期望dp)
这道题算是真正意义上人生第一道期望的题?
题目大意:
给定一个n个点的,以1号点为根的树,每一次可以将一个点和它的子树全部染黑,求染黑所有点的期望
QwQ说实话,我对期望这种东西,一点也不理解。。。
根据期望的线性性,计算出每个点比选择的期望次数,然后直接相加
所以得出\(E(x) = \frac{1}{dep[x]}\)
这里之所以是$ \frac{1}{dep[x]}$是因为我们求的期望是每个点把自己及自己子树染黑的概率(而不是靠祖先)
或者换种说法:
整棵树的期望操作次数太大,难以找到方法。这时我们需要突破口。
该如何将大问题转化为小问题呢?我们发现,一棵树是可以分成好几颗子树的,而子树分解的最终状态就是所有的点。那么,我们是不是可以计算出 每个点被染黑的期望操作次数,然后相加就是整棵树的了?答案是当然可以。
这里需要注意的是,对于每个点的操作次数是指的在这个点上的操作。对于每一个点,如果其祖先被染黑了,它自己也会被顺带染黑,而这个对于该点来说是没有进行操作的。所以得出对于点x:\(E(x) = \frac{1}{dep[x]}\)
直接上代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e5+1e2;
const int maxm = 2e5+1e2;
int point[maxn],nxt[maxm],to[maxm];
double dep[maxn];
int vis[maxn];
int n,m;
int cnt;
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void dfs(int x,double dp)
{
dep[x]=dp;
vis[x]=1;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (!vis[p])
{
dfs(p,dp+1.0);
}
}
}
double ans=0;
int main()
{
scanf("%d",&n);
for (int i=1;i<n;i++)
{
int x,y;
x=read(),y=read();
addedge(x,y);
addedge(y,x);
}
//cout<<"gg"<<endl;
dep[1]=1;
dfs(1,1.0);
for (int i=1;i<=n;i++)
{
ans=ans+1.0/dep[i];
}
printf("%.8lf",ans);
return 0;
}
CF280C Game on tree(期望dp)的更多相关文章
- cf280C. Game on Tree(期望线性性)
题意 题目链接 Sol 开始想的dp,发现根本不能转移(貌似只能做链) 根据期望的线性性,其中\(ans = \sum_{1 * f(x)}\) \(f(x)\)表示删除\(x\)节点的概率,显然\( ...
- Nowcoder156F 托米的游戏/CF280C Game on tree 期望
传送门 题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮.$N \leq 10^5$ 和的期望等于期望的和,我们考虑每一个点对最后答案的贡 ...
- CF280C Game on Tree 期望
期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...
- 2018.09.09 codeforces280C. Game on Tree(期望dp)
传送门 期望dp经典题. 显然只需要算出每个点被染黑的期望步数. 点i被染黑的期望是1/(1到i这条链上的节点数)" role="presentation" style= ...
- CF280C Game on Tree
题目链接 : CF280C Game on Tree 题意 : 给定一棵n个节点的树T 根为一(我咕的翻译漏掉了...) 每次随机选择一个未被删除的点 并将它的子树删除 求删整棵树的期望步数 n ∈ ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
随机推荐
- 再过五分钟,你就懂 HTTP 2.0 了!
Hey guys ,各位小伙伴们大家好,这里是程序员 cxuan,欢迎你收看我最新一期的文章. 这篇文章我们来聊一聊 HTTP 2.0,以及 HTTP 2.0 它在 HTTP 1.1 的基础上做了哪些 ...
- C# - 习题02_写出程序的输出结果a.Fun()
时间:2017-08-23 整理:byzqy 题目:写出程序的输出结果: 文件:Program.cs 1 using System; 2 3 namespace Interview1 4 { 5 pu ...
- 字符串截取子串(Java substring , indexOf)
前言 因为之前java课设做的是股票分析系统,我找的接口返回的是一个.csv文件,因为这种文件里面的数据是以逗号分隔的,所以要对数据进行分析的时候需要截取子串,并且以逗号作为截取的标志.所以接下来就说 ...
- RTSP H264/HEVC 流 Wasm 播放
本文将介绍 RTSP H264/HEVC 裸流如何于网页前端播放.涉及 WebSocket 代理发送流数据, Wasm 前端解码等. 代码: https://github.com/ikuokuo/rt ...
- K8S的部署方式
K8S部署主要有两种方式:
- Linux基础命令(基于CentOS7)
1.帮助相关命令 man 查看普通命令的帮助 --help 只能查看内置命令 info 查看一个命令的更多信息 type 查看是否为内置命令 2.关机重启 shutdown -h 关机 -r 重启 - ...
- GDAL 矢量裁剪栅格
本节将介绍如何在Python中用GDAL实现根据矢量边界裁剪栅格数据. from osgeo import gdal, gdal_array import shapefile import numpy ...
- 20210712考试-2021noip11
这篇总结比我写的好多了建议直接去看 T1 简单的序列 考场:愣了一会,想到以最大值分治.每次枚举最大值两侧更小的区间,st表预处理前缀和和最大值,用桶统计答案. 注意分治时要去掉最大值. const ...
- AgileConfig轻量级配置中心1.4.0发布,重构了发布功能
加入 NCC 先说一个事,AgileConfig 在 7 月底终于通过了 NCC 社区的审核,正式成为了 NCC 大家庭的一员.这对 AgileConfig 来说是一个里程碑,希望加入 NCC 后能更 ...
- Emit优化反射(属性的设置与获取)
在频繁的通过反射来设置和获取属性的值时是比较耗时的,本章通过Emit技术优化反射来提高获取和设置属性值的效率 一.实现代码: /// <summary> /// 设置器委托 /// < ...