题目传送门

题目大意

给出一个长度为 \(n\) 的排列 \(a_{1,2,...,n}\) 以及常数 \(k\),每次可以交换两个数 \(a_i,a_j\) 当且仅当 \(j-i\ge k \text{ and } |a_i-a_j|=1\) ,问最小能变成的最小字典序的 \(a\) 序列。

\(n\le 5\times 10^5\)

思路

首先很重要的一点是,我们肯定得把题目转换一下,不然 \(j-i\ge k\) 这个条件太难用了。我们其实可以设 \(p_i\) 表示元素 \(i\) 所在的位置,那么所求就等价于让 \(p_{1,2,...,n}\) 字典序最小,而交换的条件就等价于 \(|j-i|=1\text{ and } |p_i-p_j|\ge k\)。

然后又是很关键的一点,我们发现其实这个就很像冒泡排序,当 \(k=1\) 其实就是冒泡排序。我们跟随这个思路,可以发现的一点就是如果存在 \(j\not= i\text{ and } |p_i-p_j|<k\) 那么 \(i,j\) 之间的位置关系就不会改变。(位置关系指的是 \(i\) 在 \(j\) 前面还是后面)如果我们把这种关系抽象成一条边(可以看出这种关系具有传递性,与边相同),相当于求出一个字典序最小的\(\text{topo}\)序(可能这里跳跃比较大,仔细想一下就可以明白了,求 \(\text{topo}\) 序相当于确定不同块的顺序,但是这些块可以交织),具体的话可以用优先队列实现。

不过还有一个问题,连边的话如果直接暴力连的话数量实际上是 \(\Theta(n^2)\) 级别的,肯定会爆炸的,不过考虑到边的传递性,所以我们可以扫描线扫一下,从右往左扫对于点 \(i\) 在 \([i+1,n]\) 中找到绝对值之差 \(<k\) 的分别比它小、大且与它最相近的点连边,这样的话就可以保证正确性了。具体可以使用值域线段树实现。

时间复杂度 \(\Theta(n\log n)\) 。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define INF 0x3f3f3f3f
#define MAXN 500005 int n,k,cnt,sum,root,a[MAXN],ans[MAXN],minn[MAXN << 2],son[MAXN << 2][2]; void change (int &x,int l,int r,int pos,int d){
if (!x) x = ++ cnt;
if (l == r) return minn[x] = d,void ();
int mid = (l + r) >> 1;
if (pos <= mid) change (son[x][0],l,mid,pos,d);
else change (son[x][1],mid + 1,r,pos,d);
minn[x] = min (minn[son[x][0]],minn[son[x][1]]);
} int query (int x,int l,int r,int tl,int tr){
if (!x) return INF;
if (l >= tl && r <= tr) return minn[x];
int mid = (l + r) >> 1,res = INF;
if (tr > mid) res = min (res,query (son[x][1],mid + 1,r,tl,tr));
if (tl <= mid) res = min (res,query (son[x][0],l,mid,tl,tr));
return res;
} template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int toop = 1,to[MAXN << 1],nxt[MAXN << 1],deg[MAXN],head[MAXN];
void Add_Edge (int u,int v){to[++ toop] = v,nxt[toop] = head[u],head[u] = toop;} signed main(){
read (n,k);memset (minn,0x3f,sizeof (minn));
for (Int i = 1,x;i <= n;++ i) read (x),a[x] = i;
for (Int i = n;i;-- i){
int lr = query (root,1,n,a[i],min (n,a[i] + k - 1));
if (lr != INF) Add_Edge (a[i],a[lr]),deg[a[lr]] ++;
int rr = query (root,1,n,max (1,a[i] - k + 1),a[i]);
if (rr != INF) Add_Edge (a[i],a[rr]),deg[a[rr]] ++;
change (root,1,n,a[i],i);
}
priority_queue <int,vector <int>,greater<int> > q;
for (Int i = 1;i <= n;++ i) if (!deg[i]) q.push (i);
while (!q.empty()){
int u = q.top();q.pop ();ans[u] = ++ sum;
for (Int i = head[u];i;i = nxt[i]) if (-- deg[to[i]] == 0) q.push (to[i]);
}
for (Int i = 1;i <= n;++ i) write (ans[i]),putchar ('\n');
return 0;
}

题解 Wide Swap的更多相关文章

  1. 【AtCoder Grand Contest 001F】Wide Swap [线段树][拓扑]

    Wide Swap Time Limit: 50 Sec  Memory Limit: 512 MB Description Input Output Sample Input 8 3 4 5 7 8 ...

  2. AT1984 Wide Swap

    AT1984 Wide Swap 题意翻译 给出一个元素集合为\(\{1,2,\dots,N\}(1\leq N\leq 500,000)\)的排列\(P\),当有\(i,j(1\leq i<j ...

  3. [LeetCode 题解]:Swap Nodes in Pairs

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述 Given a li ...

  4. AtCoder AGC001F Wide Swap (线段树、拓扑排序)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_f 题解: 先变成排列的逆,要求\(1\)的位置最小,其次\(2\)的位置最小,依次排下去( ...

  5. leetcode 题解 || Swap Nodes in Pairs 问题

    problem: Given a linked list, swap every two adjacent nodes and return its head. For example, Given ...

  6. Atcoder Grand Contest 001 F - Wide Swap(拓扑排序)

    Atcoder 题面传送门 & 洛谷题面传送门 咦?鸽子 tzc 来补题解了?奇迹奇迹( 首先考虑什么样的排列可以得到.我们考虑 \(p\) 的逆排列 \(q\),那么每次操作的过程从逆排列的 ...

  7. AGC001F - Wide Swap

    Description 给你一个长度为$n$的排列,每次可以交换$|i-j|\geq K$并且$|a_i-a_j|=1$的数对,问你经过若干次变换后最小字典序的排列是啥 Solution 对$a$做一 ...

  8. LeetCode题解之Swap Nodes in Pairs

    1.题目描述 2.问题分析 对两个节点进行交换操作 3.代码 ListNode* swapPairs(ListNode* head) { if( !head || head->next == N ...

  9. leetcode个人题解——#24 Swap Nodes in Pairs

    因为不太熟悉链表操作,所以解决方法烦了点,空间时间多有冗余. 代码中l,r分别是每一组的需要交换的左右指针,temp是下一组的头指针,用于交换后链接:res是交换后的l指针,用于本组交换后尾指针在下一 ...

随机推荐

  1. Go版本管理--go.sum

    目录 1. 简介 2. go.sum文件记录 3. 生成 4.校验 5.校验和数据库 1. 简介 为了确保一致性构建,Go引入了go.mod文件来标记每个依赖包的版本,在构建过程中go命令会下载go. ...

  2. Maven无法导入插件,pom文件报错

    最近在使用IDEA导入开源项目bootshiro,更新依赖的时候,发现有些插件无法导入,以致于pom文件一直报找不到该插件的错误 一开始就网上各种百度,无论怎么更换阿里云的镜像都导不进,最后想着试试自 ...

  3. TFRecord读写简介+Demo 基于Ubuntu18.04+Tensorflow1.12 无WARNING

    简介 TFRecord是TensorFlow官方推荐使用的数据格式化存储工具. 它规范了数据的读写方式. 只要生成一次TFRecord,之后的数据读取和加工处理的效率都会得到提高. 将图片转换成TFR ...

  4. 用CUDA写出比Numpy更快的规约求和函数

    技术背景 在前面的几篇博客中我们介绍了在Python中使用Numba来写CUDA程序的一些基本操作和方法,并且展示了GPU加速的实际效果.在可并行化的算法中,比如计算两个矢量的加和,或者是在分子动力学 ...

  5. configparser生成模块写

    # -*-coding:utf-8-*-__author__ = "logan.xu"#写配置文件import configparserconfig = configparser. ...

  6. SpringBoot详解(一)——

    https://www.cnblogs.com/lifullmoon/p/14957771.html https://www.cnblogs.com/lifullmoon/p/14957751.htm ...

  7. 被面试官问懵:TCP 四次挥手收到乱序的 FIN 包会如何处理?

    摘要:收到个读者的问题,他在面试的时候,被搞懵了,因为面试官问了他这么一个网络问题. 本文分享自华为云社区<TCP 四次挥手收到乱序的 FIN 包会如何处理?>,作者:小林coding . ...

  8. [考试总结]noip模拟41

    发现长时间鸽博客会导致 rp--,所以今天来补一补 这个题目其实不是很毒瘤,然而是非常毒瘤... 题目不说请就是非常非常的烦人 首先 \(T1\) 就整整有两个歧义的地方,也就是说我们一共有 \(4\ ...

  9. 代码注释规范之Doxygen

    1.Doxygen简介 Doxygen是一个程序的文档产生工具,可以将程序中的注释转换成说明文档或者说是API参考手册,从而减少程序员整理文档的时间.当然这里程序中的注释需要遵循一定的规则书写,才能让 ...

  10. Linux中不用用户可以使用相同的uid

    usermod -u 513 -o  tom 使得用户tom可以使用uid等于513,即使513已经被其他用户使用了