题解 Wide Swap
题目大意
给出一个长度为 \(n\) 的排列 \(a_{1,2,...,n}\) 以及常数 \(k\),每次可以交换两个数 \(a_i,a_j\) 当且仅当 \(j-i\ge k \text{ and } |a_i-a_j|=1\) ,问最小能变成的最小字典序的 \(a\) 序列。
\(n\le 5\times 10^5\)
思路
首先很重要的一点是,我们肯定得把题目转换一下,不然 \(j-i\ge k\) 这个条件太难用了。我们其实可以设 \(p_i\) 表示元素 \(i\) 所在的位置,那么所求就等价于让 \(p_{1,2,...,n}\) 字典序最小,而交换的条件就等价于 \(|j-i|=1\text{ and } |p_i-p_j|\ge k\)。
然后又是很关键的一点,我们发现其实这个就很像冒泡排序,当 \(k=1\) 其实就是冒泡排序。我们跟随这个思路,可以发现的一点就是如果存在 \(j\not= i\text{ and } |p_i-p_j|<k\) 那么 \(i,j\) 之间的位置关系就不会改变。(位置关系指的是 \(i\) 在 \(j\) 前面还是后面)如果我们把这种关系抽象成一条边(可以看出这种关系具有传递性,与边相同),相当于求出一个字典序最小的\(\text{topo}\)序(可能这里跳跃比较大,仔细想一下就可以明白了,求 \(\text{topo}\) 序相当于确定不同块的顺序,但是这些块可以交织),具体的话可以用优先队列实现。
不过还有一个问题,连边的话如果直接暴力连的话数量实际上是 \(\Theta(n^2)\) 级别的,肯定会爆炸的,不过考虑到边的传递性,所以我们可以扫描线扫一下,从右往左扫对于点 \(i\) 在 \([i+1,n]\) 中找到绝对值之差 \(<k\) 的分别比它小、大且与它最相近的点连边,这样的话就可以保证正确性了。具体可以使用值域线段树实现。
时间复杂度 \(\Theta(n\log n)\) 。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define INF 0x3f3f3f3f
#define MAXN 500005
int n,k,cnt,sum,root,a[MAXN],ans[MAXN],minn[MAXN << 2],son[MAXN << 2][2];
void change (int &x,int l,int r,int pos,int d){
if (!x) x = ++ cnt;
if (l == r) return minn[x] = d,void ();
int mid = (l + r) >> 1;
if (pos <= mid) change (son[x][0],l,mid,pos,d);
else change (son[x][1],mid + 1,r,pos,d);
minn[x] = min (minn[son[x][0]],minn[son[x][1]]);
}
int query (int x,int l,int r,int tl,int tr){
if (!x) return INF;
if (l >= tl && r <= tr) return minn[x];
int mid = (l + r) >> 1,res = INF;
if (tr > mid) res = min (res,query (son[x][1],mid + 1,r,tl,tr));
if (tl <= mid) res = min (res,query (son[x][0],l,mid,tl,tr));
return res;
}
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int toop = 1,to[MAXN << 1],nxt[MAXN << 1],deg[MAXN],head[MAXN];
void Add_Edge (int u,int v){to[++ toop] = v,nxt[toop] = head[u],head[u] = toop;}
signed main(){
read (n,k);memset (minn,0x3f,sizeof (minn));
for (Int i = 1,x;i <= n;++ i) read (x),a[x] = i;
for (Int i = n;i;-- i){
int lr = query (root,1,n,a[i],min (n,a[i] + k - 1));
if (lr != INF) Add_Edge (a[i],a[lr]),deg[a[lr]] ++;
int rr = query (root,1,n,max (1,a[i] - k + 1),a[i]);
if (rr != INF) Add_Edge (a[i],a[rr]),deg[a[rr]] ++;
change (root,1,n,a[i],i);
}
priority_queue <int,vector <int>,greater<int> > q;
for (Int i = 1;i <= n;++ i) if (!deg[i]) q.push (i);
while (!q.empty()){
int u = q.top();q.pop ();ans[u] = ++ sum;
for (Int i = head[u];i;i = nxt[i]) if (-- deg[to[i]] == 0) q.push (to[i]);
}
for (Int i = 1;i <= n;++ i) write (ans[i]),putchar ('\n');
return 0;
}
题解 Wide Swap的更多相关文章
- 【AtCoder Grand Contest 001F】Wide Swap [线段树][拓扑]
Wide Swap Time Limit: 50 Sec Memory Limit: 512 MB Description Input Output Sample Input 8 3 4 5 7 8 ...
- AT1984 Wide Swap
AT1984 Wide Swap 题意翻译 给出一个元素集合为\(\{1,2,\dots,N\}(1\leq N\leq 500,000)\)的排列\(P\),当有\(i,j(1\leq i<j ...
- [LeetCode 题解]:Swap Nodes in Pairs
前言 [LeetCode 题解]系列传送门: http://www.cnblogs.com/double-win/category/573499.html 1.题目描述 Given a li ...
- AtCoder AGC001F Wide Swap (线段树、拓扑排序)
题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_f 题解: 先变成排列的逆,要求\(1\)的位置最小,其次\(2\)的位置最小,依次排下去( ...
- leetcode 题解 || Swap Nodes in Pairs 问题
problem: Given a linked list, swap every two adjacent nodes and return its head. For example, Given ...
- Atcoder Grand Contest 001 F - Wide Swap(拓扑排序)
Atcoder 题面传送门 & 洛谷题面传送门 咦?鸽子 tzc 来补题解了?奇迹奇迹( 首先考虑什么样的排列可以得到.我们考虑 \(p\) 的逆排列 \(q\),那么每次操作的过程从逆排列的 ...
- AGC001F - Wide Swap
Description 给你一个长度为$n$的排列,每次可以交换$|i-j|\geq K$并且$|a_i-a_j|=1$的数对,问你经过若干次变换后最小字典序的排列是啥 Solution 对$a$做一 ...
- LeetCode题解之Swap Nodes in Pairs
1.题目描述 2.问题分析 对两个节点进行交换操作 3.代码 ListNode* swapPairs(ListNode* head) { if( !head || head->next == N ...
- leetcode个人题解——#24 Swap Nodes in Pairs
因为不太熟悉链表操作,所以解决方法烦了点,空间时间多有冗余. 代码中l,r分别是每一组的需要交换的左右指针,temp是下一组的头指针,用于交换后链接:res是交换后的l指针,用于本组交换后尾指针在下一 ...
随机推荐
- 关于innodb中MVCC的一些理解
一.MVCC简介 MVCC (Multiversion Concurrency Control),即多版本并发控制技术,它使得大部分支持行锁的事务引擎,不再单纯的使用行锁来进行数据库的并发控制,取而代 ...
- uniapp 封装 request 并 配置跨域,( 本地 + 线上 + 封装 )
找到上面这个 文件,不管是用 命令创建 还是 用 HBX 创建,都一样会有这个文件的,然后跟着截图复制粘贴就好了. // 这是配置本地能跨域的,或者你可以直接让后端给你设置请求头,避免了跨域. &qu ...
- HCNP Routing&Switching之OSPF LSA更新规则和路由汇总
前文我们了解了OSPF外部路由类型以及forwarding address字段的作用,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15225673.html: ...
- C# Dapper基本三层架构使用 (四、Web UI层)
三层架构的好处,一套代码无论WinForm还是Web都可以通用,只写前台逻辑就可以了,现在展示Web调用三层的示例 首先在项目中创建一个Web MVC5项目,目前项目目录如下 在Web项目Web.co ...
- SpingBoot-Dubbo-Zookeeper-分布式
目录 分布式理论 什么是分布式系统? Dubbo文档 单一应用架构 垂直应用架构 分布式服务架构 流动计算架构 什么是RPC RPC基本原理 测试环境搭建 Dubbo Dubbo环境搭建 Window ...
- Dubbo No provider问题排查思路
本文已收录 https://github.com/lkxiaolou/lkxiaolou 欢迎star. 不想看字的同学可直接划到底部查看思维导图 问题分析 使用过Dubbo的朋友很多都碰到过如下报错 ...
- 九、Abp vNext 基础篇丨评论聚合功能
介绍 评论本来是要放到标签里面去讲的,但是因为上一章东西有点多了,我就没放进去,这一章单独拿出来,内容不多大家自己写写就可以,也算是对前面讲解的一个小练习吧. 相关注释我也加在代码上面了,大家看看代码 ...
- Hadoop 2.x安装
1.关闭防火墙 systemctl stop firewalld.service #停止firewallsystemctl disable firewalld.service #禁止firewall开 ...
- 求 10000 以内 n 的阶乘
求 10000以内 n 的阶乘. 输入格式 只有一行输入,整数 n(0≤n≤10000) 输出格式 一行,即 n!的值. 输出时每行末尾的多余空格,不影响答案正确性 样例输入 100 样例输出 933 ...
- POJ题目 1003Hangover(叠放纸牌)
POJ 1003 叠放纸牌 描述 您可以将多张纸牌悬在桌子上多远?如果您有一张卡,则可以创建一个最大长度为卡长的一半.(我们假设这些卡片必须垂直于桌子.)使用两张卡片,您可以使最上面的卡片悬垂在底部的 ...