文本分布式表示(三):用gensim训练word2vec词向量
今天参考网上的博客,用gensim训练了word2vec词向量。训练的语料是著名科幻小说《三体》,这部小说我一直没有看,所以这次拿来折腾一下。
《三体》这本小说里有不少人名和一些特殊名词,我从网上搜了一些,作为字典,加入到jieba里,以提高分词的准确性。
一、gensim中关于word2vec的参数说明
这一部分其他博客整理的比较清楚了,我也就不抄过来了。看这个链接:
https://www.cnblogs.com/pinard/p/7278324.html
二、gensim训练word2vec词向量
(一)第一步:jieba加载自定义词典
词典是每个词单独一行,然后加入的时候,要注意把换行符去掉:word.strip(),不然你会惊奇地发现我的词典加进去了怎么没效果呢?
#encoding=utf8
import jieba
from gensim.models import word2vec
import gensim # 第一步:加入字典
def add_dict():
f = open('./text/special_nouns.txt','r', encoding='utf-8')
for word in f:
jieba.suggest_freq(word.strip(),tune=True)
f.close() add_dict()
(二)第二步:读取小说文本,进行分词,并保存分词结果
一般小说下载下来,文档的原始编码格式不是 UTF-8,而是 GBK,所以要进行编码转换。看其他博客转来转去比较麻烦,我是没转成功。。。然后我就直接把文档另存为 UTF-8 格式了。
jieba分完词后,要把结果用空格 ' ' 符号连接起来:' '.join(jieba.cut(document)), 词语之间用空格隔开,这才是正确的输入格式。
# 第二步:读取三体小说的文本,并进行分词
def document_segment(filename):
f = open(filename, 'r',encoding='utf-8')
document = f.read()
document_cut = ' '.join(jieba.cut(document))
with open('./text/The_three_body_problem_segment.txt','w',encoding='utf-8') as f2:
f2.write(document_cut) #
f.close()
f2.close() document_segment('./text/The_three_body_problem.txt')
(三)第三步:用CBOW模型训练词向量
LineSentence这个方法把传入的文件转化为一个迭代器,这个文件需要是每一行就是一个句子,每个句子中的词之间用空格隔开。
word2vec 相关的参数都在包word2vec.Word2Vec中,sg=0表示用CBOW模型来训练,hs=1表示加速方法为层次softmax,min_count=1表示词的词频低于1就会被丢弃,实际上没丢弃任何词语。
windows=3 表示滑动窗口为3,上下文词各取1个。size=100表示词向量维度是100。
之所以这么设置是因为这个语料比较小。
def train_w2v(filename): text = word2vec.LineSentence(filename)
model = word2vec.Word2Vec(text, sg=0,hs=1,min_count=1,window=3,size=100)
model.save('./my_model') train_w2v('./text/The_three_body_problem_segment.txt')
(四)第四步:导入模型,简单应用
导入保存好的模型后,一个是根据词把相应的词向量取出来,可以看到,取了三个词的词向量,所以词向量矩阵为3*100维。
然后是计算两个词之间的相似度。再就是得到和某个词比较相关的词的列表。
# 导入保存好的模型
model = word2vec.Word2Vec.load('./my_model') # 取出词语对应的词向量。
vec = model[['红岸','水滴','思想钢印']]
print('三个词的词向量矩阵的维度是:', vec.shape,'。')
print('-------------------------------我是分隔符------------------------')
# 计算两个词的相似程度。
print('叶文洁和红岸的余弦相似度是:', model.similarity('叶文洁', '红岸'),'。')
print('-------------------------------我是分隔符------------------------')
# 得到和某个词比较相关的词的列表
sim1 = model.most_similar('叶文洁',topn=10)
for key in sim1:
print('和叶文洁比较相关的词有',key[0],',余弦距离是:',key[1])
三个词的词向量矩阵的维度是: (3, 100) 。
-------------------------------我是分隔符------------------------
叶文洁和红岸的余弦相似度是: 0.27795327 。
-------------------------------我是分隔符------------------------
和叶文洁比较相关的词有 章北海 ,余弦距离是: 0.9233694672584534
和叶文洁比较相关的词有 他 ,余弦距离是: 0.9116515517234802
和叶文洁比较相关的词有 罗辑 ,余弦距离是: 0.9056273698806763
和叶文洁比较相关的词有 汪淼 ,余弦距离是: 0.8981802463531494
和叶文洁比较相关的词有 吴岳 ,余弦距离是: 0.8976055979728699
和叶文洁比较相关的词有 她 ,余弦距离是: 0.893031895160675
和叶文洁比较相关的词有 程心 ,余弦距离是: 0.8800253868103027
和叶文洁比较相关的词有 丁仪 ,余弦距离是: 0.8800160884857178
和叶文洁比较相关的词有 云天明 ,余弦距离是: 0.8763566613197327
和叶文洁比较相关的词有 她们 ,余弦距离是: 0.875525712966919
文本分布式表示(三):用gensim训练word2vec词向量的更多相关文章
- word2vec词向量训练及中文文本类似度计算
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python ...
- 在Keras模型中one-hot编码,Embedding层,使用预训练的词向量/处理图片
最近看了吴恩达老师的深度学习课程,又看了python深度学习这本书,对深度学习有了大概的了解,但是在实战的时候, 还是会有一些细枝末节没有完全弄懂,这篇文章就用来总结一下用keras实现深度学习算法的 ...
- word2vec词向量处理中文语料
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间 ...
- 使用 DL4J 训练中文词向量
目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词.去停用词以及一些根据实 ...
- 文本主题抽取:用gensim训练LDA模型
得知李航老师的<统计学习方法>出了第二版,我第一时间就买了.看了这本书的目录,非常高兴,好家伙,居然把主题模型都写了,还有pagerank.一路看到了马尔科夫蒙特卡罗方法和LDA主题模型这 ...
- 文本分布式表示(一):word2vec理论
Word2vec是Google的Mikolov等人提出来的一种文本分布式表示的方法,这种方法是对神经网络语言模型的“瘦身”, 巧妙地运用层次softmax(hierarchical softmax ) ...
- 使用word2vec训练中文词向量
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...
- word2vec词向量处理英文语料
word2vec介绍 word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集 ...
- 机器学习之路: python 实践 word2vec 词向量技术
git: https://github.com/linyi0604/MachineLearning 词向量技术 Word2Vec 每个连续词汇片段都会对后面有一定制约 称为上下文context 找到句 ...
随机推荐
- 玩转Spring MVC(五)----在spring中整合log4j
在前边的基础上,本文主要总结一下如何在spring 中配置log4j,在本文末尾会给出完整项目的链接. 首先是web.xml中要新添加的代码: <!-- 6. 配置log4j --> &l ...
- windows命令中的cd
cd命令的作用为改变文件夹,也就是跳转目录.切换路径的意思.它后面可以接驱动器符号.完整路径和相对路径. 打开命令行窗口的时候,默认的目录位于当前用户所在的路径下,比如:C:\Users\koi\De ...
- MVC之图片验证码
MVC之图片验证码 controller中的action方法public ActionResult GetValidateCode() { ValidateCode vCode = new Valid ...
- MyBatis的增删改查。
数据库的经典操作:增删改查. 在这一章我们主要说明一下简单的查询和增删改,并且对程序接口做了一些调整,以及对一些问题进行了解答. 1.调整后的结构图: 2.连接数据库文件配置分离: 一般的程序都会把连 ...
- fasthttp中的协程池实现
fasthttp中的协程池实现 协程池可以控制并行度,复用协程.fasthttp 比 net/http 效率高很多倍的重要原因,就是利用了协程池.实现并不复杂,我们可以参考他的设计,写出高性能的应用. ...
- 十条有用的GO技术
十条有用的 Go 技术 这里是我过去几年中编写的大量 Go 代码的经验总结而来的自己的最佳实践.我相信它们具有弹性的.这里的弹性是指: 某个应用需要适配一个灵活的环境.你不希望每过 3 到 4 个月就 ...
- 用C++向一个txt文档中写数据
bool CMaked::WriteFileMake(CString filePath, const char *isChange) { ofstream file; //filePath为该txt文 ...
- BZOJ_4636_蒟蒻的数列_线段树+动态开点
BZOJ_4636_蒟蒻的数列_线段树+动态开点 Description 蒟蒻DCrusher不仅喜欢玩扑克,还喜欢研究数列 题目描述 DCrusher有一个数列,初始值均为0,他进行N次操作,每次将 ...
- h5仿微信聊天(高仿版)、微信聊天表情|对话框|编辑器
之前做过一版h5微信聊天移动端,这段时间闲来无事就整理了下之前项目,又重新在原先的那版基础上升级了下,如是就有了现在的h5仿微信聊天高仿版,新增了微聊.通讯录.探索.我四个模块 左右触摸滑屏切换,聊天 ...
- html中layui+jfinal模板实现前端搜索功能
<input type="text" id="campus" class="layui-input" onkeyup="ck ...