numpy教程:快速傅里叶变换模块numpy.fft
http://blog.csdn.net/pipisorry/article/details/51050297
快速傅里叶变换
NumPy中,fft模块提供了快速傅里叶变换的功能。在这个模块中,许多函数都是成对存在的,也就是说许多函数存在对应的逆操作函数。例如,fft和ifft函数就是其中的一对。
import numpy as np
from matplotlib.pyplot import plot, show
x = np.linspace(0, 2 * np.pi, 30) #创建一个包含30个点的余弦波信号
wave = np.cos(x)
transformed = np.fft.fft(wave) #使用fft函数对余弦波信号进行傅里叶变换。
print np.all(np.abs(np.fft.ifft(transformed) - wave) < 10 ** -9) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。
plot(transformed) #使用Matplotlib绘制变换后的信号。
show()
移频
numpy.fft模块中的fftshift函数可以将FFT输出中的直流分量移动到频谱的中央。ifftshift函数则是其逆操作。
import numpy as np
from matplotlib.pyplot import plot, show
x = np.linspace(0, 2 * np.pi, 30)
wave = np.cos(x) #创建一个包含30个点的余弦波信号。
transformed = np.fft.fft(wave) #使用fft函数对余弦波信号进行傅里叶变换。
shifted = np.fft.fftshift(transformed) #使用fftshift函数进行移频操作。
print np.all((np.fft.ifftshift(shifted) - transformed) < 10 ** -9) #用ifftshift函数进行逆操作,这将还原移频操作前的信号。
plot(transformed, lw=2)
plot(shifted, lw=3)
show() #使用Matplotlib分别绘制变换和移频处理后的信号。
from: http://blog.csdn.net/pipisorry/article/details/51050297
ref:
numpy教程:快速傅里叶变换模块numpy.fft的更多相关文章
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- NumPy 教程目录
NumPy 教程目录 1 Lesson1--NumPy NumPy 安装 2 Lesson2--NumPy Ndarray 对象 3 Lesson3--NumPy 数据类型 4 Lesson4--Nu ...
- 快速傅里叶变换(FFT)算法【详解】
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- numpy教程
[转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...
- 快速傅里叶变换(FFT)随笔
终于学会了FFT,水一篇随笔记录一下 前置知识网上一大堆,这里就不多赘述了,直接切入正题 01 介绍FFT 这里仅指出FFT在竞赛中的一般应用,即优化多项式乘法 一般情况下,计算两个规模为$n$的多项 ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 转:Numpy教程
因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...
- 快速傅里叶变换(FFT)学习笔记
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...
随机推荐
- bzoj2339[HNOI2011]卡农 dp+容斥
2339: [HNOI2011]卡农 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 842 Solved: 510[Submit][Status][ ...
- Python3 运算符
装载自:https://www.cnblogs.com/cisum/p/8064222.html Python3 运算符 什么是运算符? 本章节主要说明Python的运算符.举个简单的例子 4 +5 ...
- Gradle学习之构建java与web项目
一.使用Gradle的java插件构建Java项目 1)Gradle插件包含了若干个接口定义和已有的任务项,语法结构:apply plugin:'插件名' ,此处我们定义插件 apply plugin ...
- SpringCloud学习之soa基础
一.soa简单介绍 1)面向服务的架构(SOA)是一个组件模型,它将应用程序的不同功能单元(称为服务)通过这些服务之间定义良好的接口和契约联系起来.SOA是解决复杂业务模块,提高扩展性,维护性,可伸缩 ...
- WPF 实现换肤功能
将所有控件的基本样式汇集到一个资源字典中,构成界面的基本样式文件,然后进行不同颜色皮肤的定制. 即在新的皮肤资源字典文件中引入基本样式文件,然后使用资源继承,并且只设置控件的颜色属性等,形成一个皮肤文 ...
- Java Web -【分页功能】详解
分页简介 分页功能在网页中是非常常见的一个功能,其作用也就是将数据分割成多个页面来进行显示. 使用场景: 当取到的数据量达到一定的时候,就需要使用分页来进行数据分割. 当我们不使用分页功能的时候,会面 ...
- mybatis逆向工程,转载别人的,很清楚
转载博客地址:http://www.cnblogs.com/selene/p/4650863.html
- CentOS 7 配置网络连接
在VMware workstation12上新建虚拟机,发现无法连接网络.然后查了一些资料,知道了怎样配置网络,记录一下. 1.首先用ifconfig命令查看虚拟机的IP地址及网关信息 观察显示内容, ...
- python:浅析python 中__name__ = '__main__' 的作用(转载)
每次看文章的源码时,Python的主程序中都会看到开头有这个,查了一下作用:https://www.cnblogs.com/alan-babyblog/p/5147770.html. 讲的很详细,就直 ...
- Spring Security基于Java配置
Maven依赖 <dependencies> <!-- ... other dependency elements ... --> <dependency> < ...