numpy教程:快速傅里叶变换模块numpy.fft
http://blog.csdn.net/pipisorry/article/details/51050297
快速傅里叶变换
NumPy中,fft模块提供了快速傅里叶变换的功能。在这个模块中,许多函数都是成对存在的,也就是说许多函数存在对应的逆操作函数。例如,fft和ifft函数就是其中的一对。
import numpy as np
from matplotlib.pyplot import plot, show
x = np.linspace(0, 2 * np.pi, 30) #创建一个包含30个点的余弦波信号
wave = np.cos(x)
transformed = np.fft.fft(wave) #使用fft函数对余弦波信号进行傅里叶变换。
print np.all(np.abs(np.fft.ifft(transformed) - wave) < 10 ** -9) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。
plot(transformed) #使用Matplotlib绘制变换后的信号。
show()
移频
numpy.fft模块中的fftshift函数可以将FFT输出中的直流分量移动到频谱的中央。ifftshift函数则是其逆操作。
import numpy as np
from matplotlib.pyplot import plot, show
x = np.linspace(0, 2 * np.pi, 30)
wave = np.cos(x) #创建一个包含30个点的余弦波信号。
transformed = np.fft.fft(wave) #使用fft函数对余弦波信号进行傅里叶变换。
shifted = np.fft.fftshift(transformed) #使用fftshift函数进行移频操作。
print np.all((np.fft.ifftshift(shifted) - transformed) < 10 ** -9) #用ifftshift函数进行逆操作,这将还原移频操作前的信号。
plot(transformed, lw=2)
plot(shifted, lw=3)
show() #使用Matplotlib分别绘制变换和移频处理后的信号。
from: http://blog.csdn.net/pipisorry/article/details/51050297
ref:
numpy教程:快速傅里叶变换模块numpy.fft的更多相关文章
- 「学习笔记」FFT 快速傅里叶变换
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...
- NumPy 教程目录
NumPy 教程目录 1 Lesson1--NumPy NumPy 安装 2 Lesson2--NumPy Ndarray 对象 3 Lesson3--NumPy 数据类型 4 Lesson4--Nu ...
- 快速傅里叶变换(FFT)算法【详解】
快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...
- 基于python的快速傅里叶变换FFT(二)
基于python的快速傅里叶变换FFT(二)本文在上一篇博客的基础上进一步探究正弦函数及其FFT变换. 知识点 FFT变换,其实就是快速离散傅里叶变换,傅立叶变换是数字信号处理领域一种很重要的算法. ...
- numpy教程
[转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...
- 快速傅里叶变换(FFT)随笔
终于学会了FFT,水一篇随笔记录一下 前置知识网上一大堆,这里就不多赘述了,直接切入正题 01 介绍FFT 这里仅指出FFT在竞赛中的一般应用,即优化多项式乘法 一般情况下,计算两个规模为$n$的多项 ...
- [学习笔记] 多项式与快速傅里叶变换(FFT)基础
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一 ...
- 转:Numpy教程
因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...
- 快速傅里叶变换(FFT)学习笔记
定义 多项式 系数表示法 设\(A(x)\)表示一个\(n-1\)次多项式,则所有项的系数组成的\(n\)维向量\((a_0,a_1,a_2,\dots,a_{n-1})\)唯一确定了这个多项式. 即 ...
随机推荐
- MFC程序设计小结
由于毕业设计要用到MFC,因此本人这段时间开始学习MFC编程,边学边做,现将一些重要的知识点总结如下: 创建一个MFC程序,操作步骤很简单,要点就是选择MFC AppWizard(exe).单文档或者 ...
- C语言第二次作业 ,
一:修改错题 1输出带框文字:在屏幕上输出以下3行信息. 将源代码输入编译器 运行程序发现错误 错误信息1: 错误原因:将stido.h拼写错误 改正方法:将stido.h改为stdio.h 错误信息 ...
- Windows下createfile函数用GENERIC_READ访问模式打不开磁盘
这两天做毕设,快气死了!想读写磁盘扇区,我就百度了,都是这样写的: HANDLE hDevice = CreateFile(TEXT("\\\\.\\PhysicalDrive1" ...
- 吴恩达深度学习第2课第3周编程作业 的坑(Tensorflow+Tutorial)
可能因为Andrew Ng用的是python3,而我是python2.7的缘故,我发现了坑.如下: 在辅助文件tf_utils.py中的random_mini_batches(X, Y, mini_b ...
- 文件上传,服务端压缩文件方法,重点是png与gif图片的压缩,保证了透明度与动画
/// <summary> /// 上传文件帮助类 /// </summary> public class ImageUploadHelper { #region SaveVi ...
- 原生js去掉所有的html标签,最终得到HTML标签中的所有内容
替换掉所有的 html标签,最终得到Html标签中的内容 <script> //替换掉所有的 html标签,最终得到Html标签中的内容 var req="<div sty ...
- 更快实现Android多级树形选择列表
快速实现Android多级树形列表,这个库是在鸿洋多级树形列表demo中修改而来. 解决的问题: 1. 支持ID为int类型和String类型. 2. 支持多级复选框选中,使用只需一行代码. 3. 支 ...
- 高仿腾讯QQ最终版
之前写过一篇关于高仿腾讯QQ的博客,不知道的看这:http://blog.csdn.net/htq__/article/details/51840273 ,主要是从界面上高仿了腾讯QQ,在UI上基本上 ...
- SpringBatch简介
spring Batch是一个轻量级的.完善的批处理框架,旨在帮助企业建立健壮.高效的批处理应用.SpringBatch是Spring的一个子项目,使用Java语言并基于Spring框架为基础开发,使 ...
- Dynamics CRM 不同的站点地图下设置默认不同的仪表板
CRM的默认仪表板只能设置一个,也就是说每个引用仪表板的站点地图下点开仪表板后都是看到的默认仪表板,例如我下图中的"日常维修仪表板" 那如果我要在不同的站点地图下看到的默认仪表板不 ...