快速傅里叶变换 & 快速数论变换
快速傅里叶变换 & 快速数论变换
[update 3.29.2017]
前言
2月10日初学,记得那时好像是正月十五放假那一天
当时写了手写版的笔记
过去近50天差不多忘光了,于是复习一下,具体请看手写版笔记
参考文献:picks miskcoo menci 阮一峰
Fast Fourier Transform
单位复数根
虚数 复数
\(i\),表示逆时针旋转90度
\(a+bi\),对应复平面上的向量
复数加法 同向量
复数乘法 “模长相乘,幅角相加”,\((a+bi)*(c+di)=ac-bd+adi+bci\)
共轭复数 实部相等,虚部互为相反数. 单位根的倒数等于共轭复数
欧拉公式 \(e^{iu}=cos(u)+isin(u)\)
单位复数根
n次单位复数根:满足\(\omega^n=1\)的复数\(\omega, \omega_n^k = e^{\frac{2\pi i}{n}k}\)
主n次单位根 \(\omega_n = e^{\frac{2\pi i}{n}}\)
消去引理,折半引理,求和引理
\(n\)个\(n\)次单位复数根在乘法意义下形成一个群,与\((Z_n,+)\)有相同的结构,因为\(w(n,0)=w(n,n)=1\ \rightarrow\ w(n,j)*w(n,k)=w(n,(j+k) mod n)\)
FFT
离散傅里叶变换DFT
对于多项式\(A(x)=\sum\limits_{j=0}^{n-1}a_jx^j\),代入n次单位复数根所得到的列向量就是a的离散傅里叶变换
快速傅里叶变换FFT
\(O(nlogn)\)计算离散傅里叶变换
使用分治的思想,按下标奇偶分类,\(A_0(x)\)是偶数项,\(A_1(x)\)是奇数项,则\(A(x)=A_0(x^2)+xA_1(x^2)\),根据折半引理仅有\(\frac{n}{2}\)次单位复数根组成
\(k < \frac{n}{2},\)
A(\omega_n^{k+\frac{n}{2}})=A_0(\omega_\frac{n}{2}^k)-\omega_n^kA_1(\omega_\frac{n}{2}^k)
\]
傅里叶逆变换
在单位复数根处插值
矩阵证明略
用\(\omega_n^{-1}\)代替\(\omega_n\),计算结果每个元素除以\(n\)即可
实现
\(\omega\)可以预处理也可以递推,预处理精度更高
递归结束时每个元素所在的位置就是“二进制翻转”的位置,可以非递归的实现fft
加倍次数界,两个次数界为n的多项式相乘,次数界为2n-1,加倍到第一个大于等于的2的幂
注意:
- 我传入的参数是次数界n,最高次数n-1,数组中用0到n-1表示
- 取整用floor向下取整,类型转换是向0取整
Fast Number-Theoretic Transform
生成子群 & 原根
子群:
\(群(S,\oplus),\ (S',\oplus),\ 满足S' \subset S,则(S',\oplus)是(S,\oplus)的子群\)
拉格朗日定理:
\(|S'| \mid |S|\)
证明需要用到陪集,得到陪集大小等于子群大小,每个陪集要么不想交要么相等,所有陪集的并是集合S,那么显然成立。
生成子群
\(a \in S\)的生成子群\(<a>=\{a^{(k)}:\ k\ge 1\}\),\(a\)是\(<a>\)的生成元
阶:
群\(S\)中\(a\)的阶是满足\(a^r=e\)的最小的r,符号\(ord(a)\)
\(ord(a)=|<a>|\),显然成立
考虑群\(Z_n^*=\{[a]_n \in Zn:gcd(a,n)=1\},\ |Z_n^*| = \phi(n)\)
阶就是满足\(a^{r} \equiv 1 \pmod n\)的最小的\(r,\ ord(a)=r\)
原根
\(g满足ord_n(g)=|Z_n^*|=\phi(n)\),对于质数\(p\),也就是说\(g^i \mod p, 0\le i <p\)结果互不相同
模n有原根的充要条件 \(n=2,4,p^e,2p^e\)
离散对数
\(g^t \equiv a \pmod n,\ ind_{n,g}(a)=t\)
因为g是原根,所以\(g^t\)每\(\phi(n)\)是一个周期,可以取到\(|Z_n^*|\)的所有元素
对于n是质数时,就是得到\([1,n-1]\)的所有数,就是\([0,n-2]\)到\([1,n-1]\)的映射
离散对数满足对数的相关性质,如\(ind(ab)\equiv ind(a)+ind(b) \pmod {n-1}\)
求原根
可以证明满足\(g^{r} \equiv 1 \pmod p\)的最小的r一定是\(p-1\)的约数
对于质数\(p\),质因子分解\(p-1\),若\(g^{\frac{p-1}{p_i}} \neq 1 \pmod p\)恒成立,g为p的原根
NTT
对于质数\(p=qn+1,\ n=2^m\),原根\(g\),则\(g^{qn} \equiv 1 \pmod p\)
将\(g_n=g^{q} \pmod p\)看做\(w_n\)的等价,满足\(w_n\)类似的性质,如:
- \(g_n^n \equiv 1 \pmod p,\ g_n^{\frac{n}{2}} \equiv -1 \pmod p\)
这里的n(用N表示吧)可以比原来那个的n(乘法结果的长度扩展到2的幂次后的n)大,只要把\(\frac{qN}{n}\)看做q就行了
常见的\(p=1004535809=479 \cdot 2^{21} + 1,\ g=3,\quad p=998244353= 2 * 17 * 2^{23} + 1,\ g=3 \)
实现
\(g^{qn}\)就是\(e^{2\pi i}\)的等价,迭代到长度\(l\)时,\(g_l=g^{\frac{p-1}{l}}\)
或者\(w_n=g_l=g_n^{\frac{n}{l}}=g^{\frac{p-1}{l}}\)
***
这里放一个大整数相乘的模板
```cpp
//fft
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int N=(1'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&cstruct meow{
double x, y;
meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator (meow a, meow b) {return meow(a.xb.x-a.yb.y, a.xb.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;
struct FastFourierTransform {
int n, rev[N];
cd omega[N], omegaInv[N];
void ini(int lim) {
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int k=0; k<n; k++) {
omega[k] = cd(cos(2*PI/n*k), sin(2*PI/n*k));
omegaInv[k] = conj(omega[k]);
}
}
void fft(cd *a, cd *w) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
for(cd *p=a; p!=a+n; p+=l)
for(int k=0; k<m; k++) {
cd t = w[n/l*k] * p[k+m];
p[k+m]=p[k]-t;
p[k]=p[k]+t;
}
}
}
void dft(cd *a, int flag) {
if(flag==1) fft(a, omega);
else {
fft(a, omegaInv);
for(int i=0; i<n; i++) a[i].x/=n;
}
}
void mul(cd *a, cd *b, int m) {
ini(m);
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i]=a[i]*b[i];
dft(a, -1);
}
}f;
int n1, n2, m, c[N];
cd a[N], b[N];
char s1[N], s2[N];
int main() {
freopen("in","r",stdin);
scanf("%s%s",s1,s2);
n1=strlen(s1); n2=strlen(s2);
for(int i=0; i<n1; i++) a[i].x = s1[n1-i-1]-'0';
for(int i=0; i<n2; i++) b[i].x = s2[n2-i-1]-'0';
m=n1+n2-1;
f.mul(a, b, m);
for(int i=0; i<m; i++) c[i]=floor(a[i].x+0.5);
for(int i=0; i<m; i++) c[i+1]+=c[i]/10, c[i]%=10;
if(c[m]) m++;
for(int i=m-1; i>=0; i--) printf("%d",c[i]);
}
```cpp
//ntt
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5, INF=1e9;
const double PI=acos(-1);
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll P=1004535809;
ll Pow(ll a, ll b,ll P) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
struct NumberTheoreticTransform {
int n, rev[N];
ll g;
void ini(int lim) {
g=3;
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
}
void dft(ll *a, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l, P);
for(ll *p=a; p!=a+n; p+=l) {
ll w=1;
for(int k=0; k<m; k++) {
ll t = w * p[k+m]%P;
p[k+m]=(p[k]-t+P)%P;
p[k]=(p[k]+t)%P;
w=w*wn%P;
}
}
}
if(flag==-1) {
ll inv=Pow(n, P-2, P);
for(int i=0; i<n; i++) a[i]=a[i]*inv%P;
}
}
void mul(ll *a, ll *b, int m) {
ini(m);
dft(a, 1); dft(b, 1);
for(int i=0; i<n; i++) a[i]=a[i]*b[i];
dft(a, -1);
}
}f;
int n1, n2, m, c[N];
ll a[N], b[N];
char s1[N], s2[N];
int main() {
freopen("in","r",stdin);
scanf("%s%s",s1,s2);
n1=strlen(s1); n2=strlen(s2);
for(int i=0; i<n1; i++) a[i] = s1[n1-i-1]-'0';
for(int i=0; i<n2; i++) b[i] = s2[n2-i-1]-'0';
m=n1+n2-1;
f.mul(a, b, m);
for(int i=0; i<m; i++) c[i]=a[i];
for(int i=0; i<m; i++) c[i+1]+=c[i]/10, c[i]%=10;
if(c[m]) m++;
for(int i=m-1; i>=0; i--) printf("%d",c[i]);
}
快速傅里叶变换 & 快速数论变换的更多相关文章
- 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...
- 快速傅里叶变换FFT& 数论变换NTT
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\m ...
- 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)
先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...
- 从傅里叶变换(FFT)到数论变换(NTT)
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更 ...
- 快速傅里叶变换(FFT)相关内容汇总
(原稿:https://paste.ubuntu.com/p/yJNsn3xPt8/) 快速傅里叶变换,是求两个多项式卷积的算法,其时间复杂度为$O(n\log n)$,优于普通卷积求法,且根据有关证 ...
- Algorithm: 多项式乘法 Polynomial Multiplication: 快速傅里叶变换 FFT / 快速数论变换 NTT
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多 ...
- 【算法】快速数论变换(NTT)初探
[简介] 快速傅里叶变换(FFT)运用了单位复根的性质减少了运算,但是每个复数系数的实部和虚部是一个余弦和正弦函数,因此系数都是浮点数,而浮点数的运算速度较慢且可能产生误差等精度问题,因此提出了以数论 ...
- Python 实现图像快速傅里叶变换和离散余弦变换
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的 ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- hdu_1042(模拟大数乘法)
计算n! #include<cstring> #include<cstdio> using namespace std; ]; int main() { int n; whil ...
- c++(八皇后)
八皇后是一道很具典型性的题目.它的基本要求是这样的:在一个8*8的矩阵上面放置8个物体,一个矩阵点只允许放置一个物体,任意两个点不能在一行上,也不能在一列上,不能在一条左斜线上,当然也不能在一条右斜线 ...
- java finally深入探究
When---什么时候需要finally: 在jdk1.7之前,所有涉及到I/O的相关操作,我们都会用到finally,以保证流在最后的正常关闭.jdk1.7之后,虽然所有实现Closable接口的流 ...
- phpMyAdmin访问远程MySQL数据库的方法
本地phpmyadmin远程连接服务器端MySQL 首先要确定你的mysql远程连接已开启,如果没有开启按照下面的二个方法操作: 方法一:改表法 因为在linux环境下,默认是关闭3306端口远程连接 ...
- 如何用vue实现树形菜单?
在公司培训了2周,布置的作业是从树形,grid分页以及echarts中选一个.由于都不是很熟,就挑了第一个.本来想在网上找找参考,然后模仿着做一个,但是网上的代码多少参差不齐,写到一半没了,所以只要自 ...
- jQuery的鼠标事件总结
jQuery的鼠标事件总结 1.click()事件. 2.dbclick()鼠标双击事件 3.mousedown()鼠标按下事件 4.mouseup()鼠标松开事件 5.mouseover()从一个元 ...
- WPF 简易新手引导
这两天不忙,所以,做了一个简易的新手引导小Demo.因为,不是项目上应用,所以,做的很粗糙,也就是给需要的人,一个思路而已. 新手引导功能的话,就是告诉用户,页面上操作的顺序,第一步要做什么,第二步要 ...
- java面向对象——类
一.类 类(class)是构造对象的模板或蓝图.由类构造(construct)对象的过程称为创建类的实例(instance). 用 java 编写的所有代码都位于某个类的内部.标准的Java 库提供了 ...
- Django_xamin注册model错误
可能出现的错误: 1. xadmin.sites.AlreadyRegistered: The model UserProfile is already registered 2. error:Fie ...
- Servlet--HttpServletResponse的2个操作流的方法
前面已经说过无数多次了,我们的项目都是基于HTTP协议的一次请求,一次响应.实际编码中,我们在处理完逻辑后一般是跳转到一个页面上,或者用输出流返回json字符串.其实跳转到一个页面往往也就是JSP,J ...