from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv1D, MaxPooling1D
import scipy.io as sio
import matplotlib.pyplot as plt
from keras.utils import np_utils
import keras
import numpy as np
from keras import regularizers
from keras.callbacks import TensorBoard
from keras.utils import plot_model
from keras import backend as K
from os.path import exists, join from os import makedirs batch_sizes = 256
nb_class = 10
nb_epochs = 2
log_dir = './bgbv2_log_dir' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 1, 2048
'''
第一步 准备数据
'''
# matlab文件名 准备数据
file_name = u'G:/GANCode/CSWU/12k drive end vps/trainset/D/D_dataset.mat'
original_data = sio.loadmat(file_name)
X_train = original_data['x_train']
Y_train = original_data['y_train']
X_test = original_data['x_test']
Y_test = original_data['y_test']
channel = 1 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], channel))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], channel))
input_shape = (X_train.shape[1], channel) # 标签打乱
permutation = np.random.permutation(Y_train.shape[0])
X_train = X_train[permutation, :, :]
Y_train = Y_train[permutation] permutation = np.random.permutation(Y_test.shape[0])
X_test = X_test[permutation, :, :]
Y_test = Y_test[permutation] X_train = X_train.astype('float32') # astype SET AS TYPE INTO
X_test = X_test.astype('float32')
#X_train = (X_train+1)/2
#X_test = (X_test+1)/2
print('x_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples') X_meta = X_test.reshape((X_test.shape[0], X_test.shape[1])) kkkkk=0 # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, Y_test[:200]) '''
第三步 设置标签 one-hot
'''
Y_test = np_utils.to_categorical(Y_test, nb_class) # Label
Y_train = np_utils.to_categorical(Y_train, nb_class) '''
第四步 网络model
'''
model = Sequential()
model.add(Conv1D(64, 11, activation='relu', input_shape=(2048, 1)))
model.add(Conv1D(64, 11, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 11, activation='relu'))
model.add(Conv1D(128, 11, activation='relu')) '''
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5)) '''
model.add(MaxPooling1D(3))
model.add(Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) embedding_layer_names = set(layer.name
for layer in model.layers
if layer.name.startswith('dense_')) # https://stackoverflow.com/questions/45265436/keras-save-image-embedding-of-the-mnist-data-set model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) callbacks = [keras.callbacks.TensorBoard(
log_dir='bgbv2_log_dir',
embeddings_layer_names=['dense_2'], #监视某一层,就要写某一层的名字,可以同时监视很多层,用上面的字典形式。
#embeddings_metadata='metadata.tsv',
embeddings_freq=1,
#histogram_freq=1,
embeddings_data=X_test # 数据要和X_train保持一致。这里我用的是一维数据,(60000,2048,1)表示有6万个样本,每个样本有2048个长度,且每个样本有1个通道(1个传感器),换成多个通道的话,就要使用多个传感器的数据。
)] model.fit(X_train, Y_train,
batch_size=batch_sizes,
callbacks=callbacks,
epochs=nb_epochs,
verbose=1,
validation_data=(X_test, Y_test)) xxasfs=1
# You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings
# keras.callbacks.TensorBoard(
# log_dir='./logs',
# histogram_freq=0,
# batch_size=32,
# write_graph=True,
# write_grads=False,
# write_images=False,
# embeddings_freq=0,
# embeddings_layer_names=None,
# embeddings_metadata=None,
# embeddings_data=None,
# update_freq='epoch')

坑死我了。

没有人教,自己琢磨了一天。

下面就能清楚地看见我们的三维图啦~用来写paper和PPT都是极好的素材。

PS:任何一个图层的输出:

https://stackoverflow.com/questions/41711190/keras-how-to-get-the-output-of-each-layer

参考1,keras Tensorboard官方说明

https://keras.io/callbacks/#tensorboard

from __future__ import print_function

from os import makedirs
from os.path import exists, join import keras
from keras.callbacks import TensorBoard
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K import numpy as np batch_size = 128
num_classes = 10
epochs = 12
log_dir = './logs' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 28, 28 # the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples') # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, y_test) # convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes) tensorboard = TensorBoard(batch_size=batch_size,
embeddings_freq=1,
embeddings_layer_names=['features'],
embeddings_metadata='metadata.tsv',
embeddings_data=x_test) model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu', name='features'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy']) model.fit(x_train, y_train,
batch_size=batch_size,
callbacks=[tensorboard],
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1]) # You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings

参考2,keras Mnist最后一层可视化。

https://keras.io/examples/tensorboard_embeddings_mnist/

参考3,IMDB影视评论最后一层可是化

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence
max_features = 500 # 原文为2000
max_len = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len) KK=x_train[:100].astype("float32")
MM=1 model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
callbacks = [keras.callbacks.TensorBoard(
log_dir='my_log_dir',
histogram_freq=1,
embeddings_freq=1,
embeddings_data=x_train[:100].astype("float32")
)]
history = model.fit(x_train, y_train, epochs=20, batch_size=128, validation_split=0.2, callbacks=callbacks) #补充 https://codeday.me/bug/20180924/267508.html

【keras】用tensorboard监视CNN每一层的输出的更多相关文章

  1. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  2. keras与tensorboard结合使用

    使用tensorboard将keras的训练过程显示出来(动态的.直观的)是一个绝好的主意,特别是在有架设好的VPS的基础上,这篇文章就是一起来实现这个过程. 一.主要原理 keras的在训练(fit ...

  3. 【Keras案例学习】 CNN做手写字符分类(mnist_cnn )

    from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets im ...

  4. fasttext和cnn的比较,使用keras imdb看效果——cnn要慢10倍。

    fasttext: '''This example demonstrates the use of fasttext for text classification Based on Joulin e ...

  5. CNN中下一层Feature map大小计算

    符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是 ...

  6. keras启用tensorboard

    在callback函数中添加tensorboard,启用tensorboard. # TensorBoard callback tensorboard_cb = K.callbacks.TensorB ...

  7. Keras框架下使用CNN进行CIFAR-10的识别测试

    有手册,然后代码不知道看一下:https://keras-cn.readthedocs.io/en/latest/ 首先是下载数据集,下载太慢了就从网盘上下载: 链接:https://pan.baid ...

  8. pytorch 中LSTM模型获取最后一层的输出结果,单向或双向

    单向LSTM import torch.nn as nn import torch seq_len = 20 batch_size = 64 embedding_dim = 100 num_embed ...

  9. caffe网络中屏蔽某一层的输出Silence层

    屏蔽label输出 layer { name: "silence0" type: "Silence" bottom: "label" pha ...

随机推荐

  1. 使用xUnit为.net core程序进行单元测试(1)

    导读 为什么要编写自动化测试程序(Automated Tests)? 可以频繁的进行测试 可以在任何时间进行测试,也可以按计划定时进行,例如:可以在半夜进行自动测试. 肯定比人工测试要快. 可以更快速 ...

  2. .NET Core TDD 前传: 编写易于测试的代码 -- 构建对象

    该系列第1篇: 讲述了如何创造"缝".  "缝"(seam)是需要知道的概念. 本文是第2篇, 介绍的是如何避免在构建对象时写出不易测试的代码. 本文的概念性内 ...

  3. 网络协议 3 - 从物理层到 MAC 层

        在上一篇博文中,我们见证了 IP 地址的诞生,机器一旦有了 IP,就可以在网络的环境里和其他的机器展开沟通了.     今天,我们来认识下 物理层 和 MAC 层.     日常生活中,身为 ...

  4. SQL 注入~MySQL专题

    Recently, 团队在做一个关于SQL的项目,这个专题是项目中的一部分,该部分正是由我来负责的.今天,分享给正在奋斗中的伙伴们,愿,你们在以后的学习道路中能有自己的收获.              ...

  5. 操作MongoDB数据库知识点

    一.命令行操作mongo: 1.开启数据库 mongo 如果启动mongo报以下错误: 运行brew services start mongodb 2.创建数据库并进入实例 use test 3.查看 ...

  6. &,^,|,的简化计算与理解

    (全部和2进制有关 , 凡是2的次方数都是独立数列,都要先分解再计算的,该计算方式仅供手工计算理解,电脑会自动进行换算的) (第二个等号后面为2进制的结果,不够位在前面补0,1为真,0为假)   A^ ...

  7. C# 切换中英文输入法

    在界面输入时,有时需要限定输入法. 在不自定义正则表达式或者其它输入处理的情况下,切换中英文时与当前语言栏匹配,有以下的几种系统方案: InputLanguage方案 使用System.Windows ...

  8. day08 Html

    <del>我被删除了</del> <!--delete--> <b>我是粗体</b> <!-- bold --> <i&g ...

  9. es6 proxy代理

    es6 新增构造函数 Proxy Proxy 构造函数,可以使用new 去创建,可以往里面插入两个参数,都是对象 let target = {} let handler = {} let proxy ...

  10. jsp内置对象-pageContext对象

    1.概念:pageContext对象能够获取JSP页面中的request.response.session.application等其他内置对象.pageContext对象的创建和初始化由容器完成,可 ...