from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Conv1D, MaxPooling1D
import scipy.io as sio
import matplotlib.pyplot as plt
from keras.utils import np_utils
import keras
import numpy as np
from keras import regularizers
from keras.callbacks import TensorBoard
from keras.utils import plot_model
from keras import backend as K
from os.path import exists, join from os import makedirs batch_sizes = 256
nb_class = 10
nb_epochs = 2
log_dir = './bgbv2_log_dir' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 1, 2048
'''
第一步 准备数据
'''
# matlab文件名 准备数据
file_name = u'G:/GANCode/CSWU/12k drive end vps/trainset/D/D_dataset.mat'
original_data = sio.loadmat(file_name)
X_train = original_data['x_train']
Y_train = original_data['y_train']
X_test = original_data['x_test']
Y_test = original_data['y_test']
channel = 1 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], channel))
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], channel))
input_shape = (X_train.shape[1], channel) # 标签打乱
permutation = np.random.permutation(Y_train.shape[0])
X_train = X_train[permutation, :, :]
Y_train = Y_train[permutation] permutation = np.random.permutation(Y_test.shape[0])
X_test = X_test[permutation, :, :]
Y_test = Y_test[permutation] X_train = X_train.astype('float32') # astype SET AS TYPE INTO
X_test = X_test.astype('float32')
#X_train = (X_train+1)/2
#X_test = (X_test+1)/2
print('x_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples') X_meta = X_test.reshape((X_test.shape[0], X_test.shape[1])) kkkkk=0 # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, Y_test[:200]) '''
第三步 设置标签 one-hot
'''
Y_test = np_utils.to_categorical(Y_test, nb_class) # Label
Y_train = np_utils.to_categorical(Y_train, nb_class) '''
第四步 网络model
'''
model = Sequential()
model.add(Conv1D(64, 11, activation='relu', input_shape=(2048, 1)))
model.add(Conv1D(64, 11, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(128, 11, activation='relu'))
model.add(Conv1D(128, 11, activation='relu')) '''
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5)) '''
model.add(MaxPooling1D(3))
model.add(Dropout(0.25))
model.add(keras.layers.Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax')) embedding_layer_names = set(layer.name
for layer in model.layers
if layer.name.startswith('dense_')) # https://stackoverflow.com/questions/45265436/keras-save-image-embedding-of-the-mnist-data-set model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) callbacks = [keras.callbacks.TensorBoard(
log_dir='bgbv2_log_dir',
embeddings_layer_names=['dense_2'], #监视某一层,就要写某一层的名字,可以同时监视很多层,用上面的字典形式。
#embeddings_metadata='metadata.tsv',
embeddings_freq=1,
#histogram_freq=1,
embeddings_data=X_test # 数据要和X_train保持一致。这里我用的是一维数据,(60000,2048,1)表示有6万个样本,每个样本有2048个长度,且每个样本有1个通道(1个传感器),换成多个通道的话,就要使用多个传感器的数据。
)] model.fit(X_train, Y_train,
batch_size=batch_sizes,
callbacks=callbacks,
epochs=nb_epochs,
verbose=1,
validation_data=(X_test, Y_test)) xxasfs=1
# You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings
# keras.callbacks.TensorBoard(
# log_dir='./logs',
# histogram_freq=0,
# batch_size=32,
# write_graph=True,
# write_grads=False,
# write_images=False,
# embeddings_freq=0,
# embeddings_layer_names=None,
# embeddings_metadata=None,
# embeddings_data=None,
# update_freq='epoch')

坑死我了。

没有人教,自己琢磨了一天。

下面就能清楚地看见我们的三维图啦~用来写paper和PPT都是极好的素材。

PS:任何一个图层的输出:

https://stackoverflow.com/questions/41711190/keras-how-to-get-the-output-of-each-layer

参考1,keras Tensorboard官方说明

https://keras.io/callbacks/#tensorboard

from __future__ import print_function

from os import makedirs
from os.path import exists, join import keras
from keras.callbacks import TensorBoard
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K import numpy as np batch_size = 128
num_classes = 10
epochs = 12
log_dir = './logs' if not exists(log_dir):
makedirs(log_dir) # input image dimensions
img_rows, img_cols = 28, 28 # the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples') # save class labels to disk to color data points in TensorBoard accordingly
with open(join(log_dir, 'metadata.tsv'), 'w') as f:
np.savetxt(f, y_test) # convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes) tensorboard = TensorBoard(batch_size=batch_size,
embeddings_freq=1,
embeddings_layer_names=['features'],
embeddings_metadata='metadata.tsv',
embeddings_data=x_test) model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu', name='features'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax')) model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy']) model.fit(x_train, y_train,
batch_size=batch_size,
callbacks=[tensorboard],
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1]) # You can now launch tensorboard with `tensorboard --logdir=./logs` on your
# command line and then go to http://localhost:6006/#projector to view the
# embeddings

参考2,keras Mnist最后一层可视化。

https://keras.io/examples/tensorboard_embeddings_mnist/

参考3,IMDB影视评论最后一层可是化

import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence
max_features = 500 # 原文为2000
max_len = 500
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len) KK=x_train[:100].astype("float32")
MM=1 model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length=max_len, name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc'])
callbacks = [keras.callbacks.TensorBoard(
log_dir='my_log_dir',
histogram_freq=1,
embeddings_freq=1,
embeddings_data=x_train[:100].astype("float32")
)]
history = model.fit(x_train, y_train, epochs=20, batch_size=128, validation_split=0.2, callbacks=callbacks) #补充 https://codeday.me/bug/20180924/267508.html

【keras】用tensorboard监视CNN每一层的输出的更多相关文章

  1. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  2. keras与tensorboard结合使用

    使用tensorboard将keras的训练过程显示出来(动态的.直观的)是一个绝好的主意,特别是在有架设好的VPS的基础上,这篇文章就是一起来实现这个过程. 一.主要原理 keras的在训练(fit ...

  3. 【Keras案例学习】 CNN做手写字符分类(mnist_cnn )

    from __future__ import print_function import numpy as np np.random.seed(1337) from keras.datasets im ...

  4. fasttext和cnn的比较,使用keras imdb看效果——cnn要慢10倍。

    fasttext: '''This example demonstrates the use of fasttext for text classification Based on Joulin e ...

  5. CNN中下一层Feature map大小计算

    符号表示: $W$:表示当前层Feature map的大小. $K$:表示kernel的大小. $S$:表示Stride的大小. 具体来讲: 整体说来,和下一层Feature map大小最为密切的就是 ...

  6. keras启用tensorboard

    在callback函数中添加tensorboard,启用tensorboard. # TensorBoard callback tensorboard_cb = K.callbacks.TensorB ...

  7. Keras框架下使用CNN进行CIFAR-10的识别测试

    有手册,然后代码不知道看一下:https://keras-cn.readthedocs.io/en/latest/ 首先是下载数据集,下载太慢了就从网盘上下载: 链接:https://pan.baid ...

  8. pytorch 中LSTM模型获取最后一层的输出结果,单向或双向

    单向LSTM import torch.nn as nn import torch seq_len = 20 batch_size = 64 embedding_dim = 100 num_embed ...

  9. caffe网络中屏蔽某一层的输出Silence层

    屏蔽label输出 layer { name: "silence0" type: "Silence" bottom: "label" pha ...

随机推荐

  1. Java下载创建好的Excel模板

    1.废话不多说,直接上源码 //从数据库取数据创建表格 private HSSFWorkbook exportStudentInfo(List<ExamStudentVo> student ...

  2. 在Windows上使用Docker运行.NetCore

    今天我们来说下如何在windows下使用docker运行.net core,既然是docker,那么我们首先得在windows上安装docker. 在Windows安装 docker 有两种选择 :1 ...

  3. 从零开始学习PYTHON3讲义(十六)(连载完)学习资源包下载

    <从零开始PYTHON3>学习资源包下载 课程连载已经完全结束. 经过整理校对,这里把在课程中出现过的源码和练习答案示例源码全部打包提供下载: https://pan.baidu.com/ ...

  4. Python3中性能测试工具Locust安装使用

    Locust安装使用: 安装: python3中           ---> pip3 install locust 验证是否安装成功---> 终端中输入 locust --help  ...

  5. SpringBoot进阶教程(二十三)Linux部署Quartz

    在之前的一篇文章中<SpringBoot(九)定时任务Schedule>,已经详细介绍了关于schedule框架的配置和使用,有收到一些朋友关于部署的私信,所以抽时间整理一个linux部署 ...

  6. 知识小罐头07(tomcat8请求源码分析 下)

    感觉最近想偷懒了,哎,强迫自己也要写点东西,偷懒可是会上瘾的,嘿嘿!一有写博客的想法要赶紧行动起来,养成良好的习惯. ok,继续上一篇所说的一些东西,上一篇说到Connector包装了那两个对象,最后 ...

  7. 推荐一款好用的任务定时器:Quartz

    前言 官网:https://www.quartz-scheduler.net/ 一款开源的任务定时器. 日常有很多地方需要定时刷新的,比如微信开发中的微信API token,或者定时清理一下缓存数据等 ...

  8. Docker进阶之四:镜像管理

      一.什么是镜像? 简单说,Docker镜像是一个不包含Linux内核而又精简的Linux操作系统. 二.镜像从哪里来? Docker Hub是由Docker公司负责维护的公共注册中心,包含大量的容 ...

  9. I/O输入流基础之FileInputStream

    InputStream:是所有字节输入流的父类,其作用是:用这个流把网络数据(getOutputStream()),文件系统的数据读入内存 由与  public abstract class Inpu ...

  10. 结合JDK源码看设计模式——策略模式

    前言: 现在电商已经成为我们生活中不可或缺的购物渠道,同时各大商家会针对不同的时间做出不同的折扣,这在我们看来就是一种营销手段,也是一种策略,今天我们就来讲讲JDK中的策略模式是怎么样的. 一.定义 ...