在论文中看到对 softmax 和 cross-entropy 的求导,一脸懵逼,故来整理整理。

以 softmax regression 为例来展示求导过程,softmax regression 可以看成一个不含隐含层的多分类神经网络,如 Fig. 1 所示。

Fig. 1 Softmax Regression.

softmax regression 的矩阵形式如 Fig. 2 所示:

Fig. 2 Matrix Form.

符号定义

如 Fig. 1 所示,\(\bm x = [x_1, x_2, x_3]^{\top}\) 表示 softmax regression 的输入,\(\bm y = [y_1, y_2, y_3]^{\top}\) 表示 softmax regression 的输出,\(\bm W\) 为权重,\(\bm b = [b_1, b_2, b_3]^{\top}\) 为偏置。

令 Fig. 2 中 softmax function 的输入为 \(z_i = W_{i, 1}x_1 + W_{i, 2}x_2 + W_{i, 3}x_3 + b_i = W_{i}\bm x + b_i\),其中 \(i= 1, 2, 3\),\(W_{i}\) 表示权重矩阵 \(\bm W\) 的第 \(i\) 行;softmax function 的输出就是整个网络的输出,即 \(\bm y\)。

Note: Fig. 1 和 Fig.2 中权重 \(W_{i, j}\) 表示第 \(i\) 个输出和第 \(j\) 个输入之间的联系,和一般的记法(即 \(W_{i, j}\) 表示第 \(i\) 个输入和第 \(j\) 个输出之间权重)相差一个转置。

用 \(m\) 表示输出的类别数,本文中 \(m = 3\)。

Note: softmax regression 指的是整个网络,softmax function 仅仅指的是激活函数。本文默认 softmax 代指激活函数,当表示整个网络时会明确说明 softmax regression。

对 softmax 求导

softmax 函数的表达式为:
\[
y_i = \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}}
\tag{1}
\]

其中 \(i= 1, 2, 3\)。由式(1)可知,\(y_i\) 与 softmax function 所有的输入 \(z_j, j = 1,2,3.\) 都有关。
softmax function 的输出对其输入求偏导:
\[
\frac{\partial y_i}{\partial z_j}
= \frac{\partial \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}}}{\partial z_j}
\tag{2}
\]

需要对式(2)中 \(i = j\) 和 \(i \not = j\) 的情况进行分别讨论。因为式(1)分子中仅含第 \(i\) 项,式(2)中如果 \(i = j\),那么导数 \(\frac{\partial e^{z_i}}{\partial z_j} = e^{z_i}\),不为 0;如果 \(i \not = j\),那导数 \(\frac{\partial e^{z_i}}{\partial z_j} = 0\)。

  • \(i = j\),则式(2)为:
    \[
    \begin{split}
    \frac{\partial y_i}{\partial z_j}
    &= \frac{\partial \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}}}{\partial z_j}
    \\ &= \frac{e^{z_i} \cdot \sum_{t = 1}^m e^{z_t} - e^{z_i} \cdot e^{z_j} }{(\sum_{t = 1}^m e^{z_t})^2}
    \\ &= \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}} - \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}} \cdot \frac{e^{z_j}}{\sum_{t = 1}^m e^{z_t}}
    \\ &=y_i(1 - y_j)
    \end{split}
    \tag{3}
    \]

当然,式(3)也可以写成 \(y_i(1 - y_i)\) 或者 \(y_j(1 - y_j)\),因为这里 \(i = j\)。

  • \(i \not = j\),则式(2)为:
    \[
    \begin{split}
    \frac{\partial y_i}{\partial z_j}
    &= \frac{\partial \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}}}{\partial z_j}
    \\ &= \frac{0\cdot \sum_{t = 1}^m e^{z_t} - e^{z_i} \cdot e^{z_j} }{(\sum_{t = 1}^m e^{z_t})^2}
    \\ &= - \frac{e^{z_i}}{\sum_{t = 1}^m e^{z_t}} \cdot \frac{e^{z_j}}{\sum_{t = 1}^m e^{z_t}}
    \\ &= -y_iy_j
    \end{split}
    \tag{4}
    \]

对 cross-entropy 求导

令 \(\bm {\hat y} = [\hat{y}_1, \hat{y}_2, \hat{y}_3]^{\top}\) 为输入 \(\bm x\) 真实类别的 one-hot encoding。

cross entropy 的定义如下:
\[
H(\bm {\hat y}, \bm y)
= - \bm {\hat y}^{\top} \log \bm y
= - \sum_{t = 1}^m \hat{y}_t\log y_t
\tag{5}
\]

对 cross entropy 求偏导:(\(\log\) 底数为 \(e\))
\[
\frac{\partial H(\bm {\hat y}, \bm y) }{\partial y_i}
= \frac{\partial [- \sum_{t = 1}^m \hat{y}_t\log y_t ]}{\partial y_i}
= - \frac{\hat{y}_i}{y_i}
\tag{6}
\]

\(\bm {\hat y}\) 是确定的值,可以理解为样本的真实 one-hot 标签,不受模型预测标签 \(\bm y\) 的影响。

对 softmax 和 cross-entropy 一起求导

\[
\begin{split}
\frac{\partial H(\bm {\hat y}, \bm y) }{\partial z_j}
&= \sum_{i = 1}^{m} \frac{\partial H(\bm {\hat y}, \bm y) }{\partial y_i} \frac{\partial y_i }{\partial z_j}
\\ &= \sum_{i = 1}^{m} -\frac{\hat{y}_i}{y_i} \cdot \frac{\partial y_i }{\partial z_j}
\\ &= \left(-\frac{\hat{y}_i}{y_i} \cdot \frac{\partial y_i }{\partial z_j}\right )_{i = j} + \sum_{i = 1 , i \not = j}^{m} -\frac{\hat{y}_i}{y_i} \cdot \frac{\partial y_i }{\partial z_j}
\\ &= -\frac{\hat{y}_j}{y_i} \cdot y_i(1-y_j) + \sum_{i = 1 , i \not = j}^{m} -\frac{\hat{y}_i}{y_i} \cdot -y_iy_j
\\ &= - \hat{y}_j + \hat{y}_jy_j + \sum_{i = 1 , i \not = j}^{m} \hat{y}_iy_j
\\ & = - \hat{y}_j + y_j\sum_{i = 1}^{m} \hat{y}_i
\\ &= y_j - \hat{y}_j
\end{split}
\tag{7}
\]

交叉熵 loss function 对 softmax function 输入 \(z_j\) 的求导结果相当简单,在 tensorflow 中,softmax 和 cross entropy 也合并成了一个函数,tf.nn.softmax_cross_entropy_with_logits,从导数求解方面看,也是有道理的。

在实际使用时,推荐使用 tensorflow 中实现的 API 去实现 softmax 和 cross entropy,而不是自己写,原因如下:

  • 都已经有 API 了,干嘛还得自己写,懒就是最好的理由;
  • softmax 因为计算了 exp(x),很容易就溢出了,比如 np.exp(800) = inf,需要做一些缩放,而 tensorflow 会帮我们处理这种数值不稳定的问题。

References

TensorFlow MNIST Dataset and Softmax Regression - Data Flair
链式法则 - 维基百科
Softmax函数与交叉熵 - 知乎

【机器学习基础】对 softmax 和 cross-entropy 求导的更多相关文章

  1. softmax交叉熵损失函数求导

    来源:https://www.jianshu.com/p/c02a1fbffad6 简单易懂的softmax交叉熵损失函数求导 来写一个softmax求导的推导过程,不仅可以给自己理清思路,还可以造福 ...

  2. softmax分类器+cross entropy损失函数的求导

    softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...

  3. softmax、cross entropy和softmax loss学习笔记

    之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可 ...

  4. 简单易懂的softmax交叉熵损失函数求导

    参考: https://blog.csdn.net/qian99/article/details/78046329

  5. softmax求导、cross-entropy求导及label smoothing

    softmax求导 softmax层的输出为 其中,表示第L层第j个神经元的输入,表示第L层第j个神经元的输出,e表示自然常数. 现在求对的导数, 如果j=i,   1 如果ji, 2 cross-e ...

  6. OO_多项式求导_单元总结

    概述: 面向对象第一单元的作业是三次难度依次递增的多项式求导.第一次作业是仅包含带符号整数和幂函数的多项式求导,例如:-1+xˆ233-xˆ06:第二次是在前面的基础上增加了三角函数的求导,例如:-1 ...

  7. OO第一单元作业——魔幻求导

    简介 本单元作业分为三次 第一次作业:需要完成的任务为简单多项式导函数的求解. 第二次作业:需要完成的任务为包含简单幂函数和简单正余弦函数的导函数的求解. 第三次作业:需要完成的任务为包含简单幂函数和 ...

  8. 【机器学习基础】交叉熵(cross entropy)损失函数是凸函数吗?

    之所以会有这个问题,是因为在学习 logistic regression 时,<统计机器学习>一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数 ...

  9. softmax,softmax loss和cross entropy的区别

     版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014380165/article/details/77284921 我们知道卷积神经网络(CNN ...

随机推荐

  1. 关于运行springboot时报Unregistering JMX-exposed beans on shutdown的解决方案

    其实这个错误并不影响程序的运行,但是对于处女座的同仁来说,看到报错难免不舒服,那么看看解决方法,此错误信息的意思是说:在关机状态下未注册jmx暴露的bean. 解决方案是在入口类上加上  @Enabl ...

  2. 自定义ListView android

    定义一个实体类,作为ListView的适配器的适配类型.其中name为水果名称.imageId为水果的图片(图片资源可以随便弄几个占用) public class Fruit { private St ...

  3. Ocelot中文文档-Websockets

    Ocelot额外支持代理websockets.这个功能在问题 212中被提出. 为了是Ocelot代理websocket,你需要做如下事情. 在你的Configure方法中,你要告知应用程序使用Web ...

  4. SpringMVC解决跨域的两种方案

    1. 什么是跨域 2. 跨域的应用情景 3. 通过注解的方式允许跨域 4. 通过配置文件的方式允许跨域 1. 什么是跨域 跨域,即跨站HTTP请求(Cross-site HTTP request),指 ...

  5. Net Core 生成图形验证码

    1. NetCore ZKweb       在我第一次绘制图形验证码时是采用的ZKweb的绘制库,奉上代码参考      public byte[] GetVerifyCode(out string ...

  6. Maven Scope 依赖范围

    Maven依赖范围就是用来控制依赖与这三种classpath(编译classpath.测试classpath.运行classpath)的关系,Maven有以下几种依赖范围: ·compile:编译依赖 ...

  7. python装饰器小计

    1.装饰器:本质是函数,是用来给其他函数添加附加扩展功能的函数,其返回值是一个函数(函数指针) 2.装饰器作用:不改变函数源代码和函数调用方式的前提下添加函数的附加功能. 3.装饰器储备知识点: A. ...

  8. PAT1129:Recommendation System

    1129. Recommendation System (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  9. git的个人配置

    一..gitconfig存储在当前用户所在文件目录下,如图1.1. 图1.1 二.git拉取代码的服务器.用户名.密码,存储的所在位置,如图1.2. 图1.2 三.是否保存密码,由.gitconfig ...

  10. c++右值引用以及使用

    前几天看了一篇文章<4行代码看看右值引用> 觉得写得不错,但是觉得右值引用的内容还有很多可以去挖掘学习,所以总结了一下,希望能对右值引用有一个更加深层次的认识 一.几个基本概念 1.1左值 ...