前言

mysql数据库是现在应用最广泛的数据库系统。与数据库打交道是每个Java程序员日常工作之一,索引优化是必备的技能之一。

为什么要了解索引

真实案例

案例一:大学有段时间学习爬虫,爬取了知乎300w用户答题数据,存储到mysql数据中。那时不了解索引,一条简单的“根据用户名搜索全部回答的sql“需要执行半分钟左右,完全满足不了正常的使用。

案例二:最近线上应用的数据库频频出现多条慢sql风险提示,而工作以来,对数据库优化方面所知甚少。例如一个用户数据页面需要执行很多次数据库查询,性能很慢,通过增加超时时间勉强可以访问,但是性能上需要优化。

索引的优点

合适的索引,可以大大减小mysql服务器扫描的数据量,避免内存排序和临时表,提高应用程序的查询性能。

索引的类型

mysql数据中有多种索引类型,primary key,unique,normal,但底层存储的数据结构都是BTREE;有些存储引擎还提供hash索引,全文索引。

BTREE是最常见的优化要面对的索引结构,都是基于BTREE的讨论。

B-TREE

查询数据最简单暴力的方式是遍历所有记录;如果数据不重复,就可以通过组织成一颗排序二叉树,通过二分查找算法来查询,大大提高查询性能。而BTREE是一种更强大的排序树,支持多个分支,高度更低,数据的插入、删除、更新更快。

现代数据库的索引文件和文件系统的文件块都被组织成BTREE。

btree的每个节点都包含有key,data和只想子节点指针。

btree有度的概念d>=1。假设btree的度为d,则每个内部节点可以有n=[d+1,2d+1)个key,n+1个子节点指针。树的最大高度为h=Logb[(N+1)/2]。

索引和文件系统中,B-TREE的节点常设计成接近一个内存页大小(也是磁盘扇区大小),且树的度非常大。这样磁盘I/O的次数,就等于树的高度h。假设b=100,一百万个节点的树,h将只有3层。即,只有3次磁盘I/O就可以查找完毕,性能非常高。

索引查询

建立索引后,合适的查询语句才能最大发挥索引的优势。

另外,由于查询优化器可以解析客户端的sql语句,会调整sql的查询语句的条件顺序去匹配最合适的索引。

-- 表创建语句
CREATE TABLE people (
last_name VARCHAR(20) NOT NULL,
first_name VARCHAR(20) NOT NULL,
gender CHAR(1) NOT NULL,
   birth date NOT NULL,
KEY last_first_name_gender_key(last_name, first_name, gener)
);

一,全值匹配

查询语句where条件和索引中的所有列进行匹配。

 SELECT * FROM people WHERE last_name='zhang' AND first_name='yin' AND gender='m';

二,最左前缀匹配

查询条件可以匹配索引的最左若干列。注意关键词”最左前缀“。

-- 可以使用部分索引"last_name"
SELECT * FROM people WHERE last_name='zhang' AND gender='m'; -- 无法使用索引
SELECT * FROM people WHERE first_name='zhang' AND gender='m';

三,列前缀匹配

查询中的like条件,在有些场景下也可以使用索引。如 last_name like 'zh%'可以使用索引,而last_name like '%ing'则无法使用索引。

-- 可以使用索引,因为BTREE的节点比较key值时是从key值得最左侧开始匹配
SELECT * FROM people WHERE last_name like 'zhang%' AND gender='m' ;

四,范围查询

索引的列也支持范围查询。

SELECT * FROM people WHERE last_name > 'zhang' AND last_name <'wang'

五,排序

ORDER BY语句在特定情况下也支持用索引来排序来提高性能。

EXPLAIN SELECT * FROM people WHERE last_name = 'zhang' ORDER BY first_name ASC

六,限制

1,查询列不能参与表达式运算,否则无法使用索引。

--表设计中没有age列,以示参考
--假设age是索引中一部分,这样的查询将无法使用到索引
SELECT * FROM people WHERE last_name='zhang' AND age+3>28; --这样写就可以使用索引
SELECT * FROM people WHERE last_name='zhang' AND age>25;

2,如果不是从索引的最左列开始,则无法使用索引。如,根据first_name、gender或者查找的查询无法使用索引。

-- 不是从last_name开始匹配,所以无法使用索引
SELECT * FROM people WHERE first_name='zhang' AND gender='m'

3,不能跳过索引中的列。

-- 不能跳过first_name查询,否则只有last_name列用到了索引
SELECT * FROM people WHERE last_name='zhang' AND gender='m'

4,如果查询中某个列是范围查询(like,between,>,<等),则其右边所有的列都无法使用索引。

-- 由于first_name用了like查询,所以gender列无法使用索引了
SELECT * FROM people WHERE last_name='zhang' AND first_name LIKE '%in' AND gender='m';

高效索引策略

前面讲到了各种可以使用索引的查询情况,下面讲如何建立高效的索引。

1,建立多列索引

 建立多列的索引,而不是每一列都建立单独的。因为在mysql服务器在查询分析后,最终只能根据查询匹配到一个索引(或者没有)并使用。所以,假设多列上分别都建立了单独索引,即使组合查询用到了多列,最终也只有一列用到了索引。

所以,假设你最常见的查询是根据last_name、first_name和gender来查询,应该建立包含三列的索引。

ALTER TABLE people ADD INDEX idx_name_gender(last_name, first_name , gender);

2,索引列的顺序

在多列B-TREE索引中,意味着索引是按照最左列开始,从左往右进行排序的。一个设计经验法则,将”选择性高“的列放在索引最左列。这样有助于索引经过最少的比较找到目标元组。

索引列选择性:不重复的索引值与表的全部记录总数的比值,0<T<=1。唯一索引列的选择性是1。索引的选择性越高则查询效率越高,可以”更早地”过滤掉不匹配地记录。

假设要建立 last_name, first_name , gender 三列的索引。

T(last_name)= select count(distinct last_name) / count(*) ;

T(first_name)= select count(distinct first_name) / count(*) ;

T(gender)= select count(distinct gender) / count(*) ;

很显然,last_name和first_name应该放到索引的前面(以实际情况为主)

结尾

了解到了常见的索引策略和查询技巧,但是怎么在实际项目中应用并排查现存数据库中sql的性能缺陷?下一篇将介绍mysql数据库的explain关键字,总结和分析慢sql常见技巧。

参考

1,《高性能mysql》

2,《MySQL索引背后的数据结构及算法原理》https://www.kancloud.cn/kancloud/theory-of-mysql-index/41844

3,https://zh.wikipedia.org/wiki/B%E6%A0%91

mysql数据库索引优化与实践(一)的更多相关文章

  1. 知识点:Mysql 数据库索引优化实战(4)

    知识点:Mysql 索引原理完全手册(1) 知识点:Mysql 索引原理完全手册(2) 知识点:Mysql 索引优化实战(3) 知识点:Mysql 数据库索引优化实战(4) 一:插入订单 业务逻辑:插 ...

  2. mysql数据库索引优化

    参考 :http://www.cnblogs.com/yangmei123/archive/2016/04/10/5375723.html MySQL数据库的优化:    数据库优化的目的:     ...

  3. MySql数据库索引优化注意事项

    设计好MySql的索引可以让你的数据库飞起来,大大的提高数据库效率.设计MySql索引的时候有一下几点注意: 1,创建索引 对于查询占主要的应用来说,索引显得尤为重要.很多时候性能问题很简单的就是因为 ...

  4. Mysql DBA 运维 MySQL数据库索引优化及数据丢失案例 MySQL备份-增量备份及数据恢复基础实战 MySQL数据库生产场景核心优化

    需要的联系我,QQ:1844912514

  5. mysql数据库性能优化(包括SQL,表结构,索引,缓存)

    优化目标减少 IO 次数IO永远是数据库最容易瓶颈的地方,这是由数据库的职责所决定的,大部分数据库操作中超过90%的时间都是 IO 操作所占用的,减少 IO 次数是 SQL 优化中需要第一优先考虑,当 ...

  6. MySQL 数据库性能优化之索引优化

    接着上一篇 MySQL 数据库性能优化之表结构,这是 MySQL数据库性能优化专题 系列的第三篇文章:MySQL 数据库性能优化之索引优化 大家都知道索引对于数据访问的性能有非常关键的作用,都知道索引 ...

  7. MySQL数据库性能优化:表、索引、SQL等

    一.MySQL 数据库性能优化之SQL优化 注:这篇文章是以 MySQL 为背景,很多内容同时适用于其他关系型数据库,需要有一些索引知识为基础 优化目标 减少 IO 次数IO永远是数据库最容易瓶颈的地 ...

  8. MYSQL数据库的优化

    我们究竟应该如何对MySQL数据库进行优化?下面我就从MySQL对硬件的选择.MySQL的安装.my.cnf的优化.MySQL如何进行架构设计及数据切分等方面来说明这个问题. 服务器物理硬件的优化 在 ...

  9. MySQL数据库的优化(上)单机MySQL数据库的优化

    MySQL数据库的优化(上)单机MySQL数据库的优化 2011-03-08 08:49 抚琴煮酒 51CTO 字号:T | T 公司网站访问量越来越大,导致MySQL的压力越来越大,让我们自然想到的 ...

随机推荐

  1. dm642的中断定时器

    TIMER_Handle TimerHandle0; void timer1() { ////////////定时器///////////////////////  TimerHandle0 = TI ...

  2. Linux 系统裁剪笔记 3

    说到裁减Linux,无非是为了减小磁盘占用或者是为了某些特定场合的应用(如嵌入式系统).以RedHat 7.3为例,其最小安装仍然达到了300M,这不得不让人对一直号称小而全的Linux系统感到疑惑. ...

  3. jQuery中的val()

    jQuery中的val() 1.实例源码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &qu ...

  4. Flex中对表格中某列的值进行数字格式化并求百分比

    1.问题背景 一般的,需要对表格中某列的数值进行格式化,对该数值乘以100,并保留两位小数,添加"%" 2.实现实例 <?xml version="1.0" ...

  5. 芝麻HTTP:在无GUI的CentOS上使用Selenium+Chrome

    各位小伙伴儿的采集日常是不是被JavaScript的各种点击事件折腾的欲仙欲死啊?好不容易找到个Selenium+Chrome可以解决问题! 但是另一个▄█▀█●的事实摆在面前,服务器都特么没有GUI ...

  6. CodeM资格赛 Round A 最长树链

    按照题解的做法,对于每一个质约数分别进行讨论最长链就行 对于每一个数的质约数可是比logn还要小的 比赛的时候没人写,我也没看 = =,可惜了,不过我当时对于复杂度的把握也不大啊 #include & ...

  7. hihocoder1391 Country

    题解的那种前缀和以前没学过,感觉是种套路 #include<bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; ...

  8. TP5 数组分页

    需要 use think\Page; 我这个是 Page是从tp3.2的移到5.0来用的,如果你的里面没有这个也可以移动过来 PHP代码: $page= $this->request->p ...

  9. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  10. [HDU5765]Bonds

    题面 题意 给出一张\(n\)点\(m\)边无向连通图,求每条边出现在多少个割集中. \(n\le20,m\le\frac{n(n-1)}{2}\) sol 所谓割集,就是指把\(n\)个点分成两个集 ...