题目

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制,求有多少种方案。

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,

Output

一个整数,即合法的方案数。

Solution

我们先来科普一下错排问题。

错排问题指考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为D(n)。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。  ---《百度百科》

看上去这就是一个递推问题,那么递推式是如何推出来呢?

当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
综上得到
   D(n) = (n-1) *(D(n-2) + D(n-1))
特殊地,D(1) = 0, D(2) = 1.
 
知道了这个之后,这题就是一个裸的高精了。
Code
// By YoungNeal
#include<cstdio>
using namespace std;
// D(n)=(n-1)*(D(n-1)+D(n-2))
// D(1)=0 D(2)=1 int n;
int D[][]; void ad(int now){
int x=;
for(int i=;i<;i++){
D[now][i]=D[now-][i]+D[now-][i]+x;
x=D[now][i]/;
D[now][i]%=;
}
x=;
for(int i=;i<;i++){
D[now][i]=D[now][i]*(now-)+x;
x=D[now][i]/;
D[now][i]%=;
}
} signed main(){
scanf("%d",&n);
D[][]=;
if(n==||n==){
printf("%d",n-);
return ;
}
for(int i=;i<=n;i++)
ad(i);
int lenc=;
while(D[n][lenc]==) lenc--;
while(lenc) printf("%d",D[n][lenc--]);
return ;
}

[HAOI2016] 放棋子及错排问题的更多相关文章

  1. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  2. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  3. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  4. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  5. [Haoi2016]放棋子 题解

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 285[Submit][Status] ...

  6. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  7. BZOJ4563:[HAOI2016]放棋子——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...

  8. BZOJ 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 389  Solved: 248[Submit][Status][Discuss] Descriptio ...

  9. BZOJ——T 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. tcp/ip 卷一 读书笔记(5)arp和rarp 同网段和不同网段之间的通信过程

    arp和rarp 同网段和不同网段之间的通信过程 IPv6中已经没有arp rarp协议,所以这里都是IPv4. 链路层使用以太网地址来确定目的地址,应用则常使用ip地址通信 arp协议是指从ip地址 ...

  2. HDP2.0测试

    1.测试Hbase (1)hive导入hbase

  3. 高性能网络 SR-IOV机制--VF与PF的通信

    PF 驱动是一个专门管理SR-IOV设备全局功能驱动,而且还要配置相关共享资源.PF 驱动 随着Hypervisor 的不同而不同,一般需要具有比普通虚拟机更高的权限才能对其进行操作.PF驱动包含了所 ...

  4. Web渗透测试笔记(基础部分)

    信息收集: dns信息收集 格式:dns... -参数 域名 -参数 示例: root@xxSec:~# dnsenum baidu.com root@xxSec:~# dnsenum -f dns. ...

  5. python函数式编程之迭代器

    什么是迭代器 顾名思义,就是更新换代的意思 python中的迭代器就是根据上一个结果生成下一个结果,一直循环往复不断重复的过程 迭代器有两个特点: 1.不断重复同一个过程 2.根据上一个结果生成下一个 ...

  6. NLP+VS=>Image Caption︱自动生成图像标题技术论文+相关项目

    读聪明人的笔记,是不是也能变聪明呢? Image Caption是一个融合计算机视觉.自然语言处理和机器学习的综合问题,它类似于翻译一副图片为一段描述文字. Image Caption问题可以定义为二 ...

  7. uboot 添加hello命令

    平台:MPC8315(POWERPC) 1.在/common/ 目录下创建自己的文件,最好前缀为cmd_. cmd_hello.c ********************************** ...

  8. Sublime codeIntel 配置支持php自动提示

    Sublime codeIntel 配置支持php自动提示 下载地址:https://github.com/SublimeCodeIntel/SublimeCodeIntel 安装方法:下载后放到su ...

  9. linux命令之 ifconfig

    许多windows非常熟悉ipconfig命令行工具,它被用来获取网络接口配置信息并对此进行修改.Linux系统拥有一个类似的工具,也就是ifconfig(interfaces config).通常需 ...

  10. hi3531 SDK 编译 uboot, 修改PHY地址, 修改 uboot 参数 .

    一,编译uboot SDK文档写得比较清楚了,写一下需要注意的地方吧. 1. 之前用SDK里和别人给的已经编译好的uboot,使用fastboot工具都刷不到板子上.最后自己用SDK里uboot源码编 ...