题目

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子的限制,求有多少种方案。

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,

Output

一个整数,即合法的方案数。

Solution

我们先来科普一下错排问题。

错排问题指考虑一个有n个元素的排列,若一个排列中所有的元素都不在自己原来的位置上,那么这样的排列就称为原排列的一个错排。 n个元素的错排数记为D(n)。 研究一个排列错排个数的问题,叫做错排问题或称为更列问题。  ---《百度百科》

看上去这就是一个递推问题,那么递推式是如何推出来呢?

当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用D(n)表示,那么D(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推.
第一步,把第n个元素放在一个位置,比如位置k,一共有n-1种方法;
第二步,放编号为k的元素,这时有两种情况:⑴把它放到位置n,那么,对于剩下的n-1个元素,由于第k个元素放到了位置n,剩下n-2个元素就有D(n-2)种方法;⑵第k个元素不把它放到位置n,这时,对于这n-1个元素,有D(n-1)种方法;
综上得到
   D(n) = (n-1) *(D(n-2) + D(n-1))
特殊地,D(1) = 0, D(2) = 1.
 
知道了这个之后,这题就是一个裸的高精了。
Code
// By YoungNeal
#include<cstdio>
using namespace std;
// D(n)=(n-1)*(D(n-1)+D(n-2))
// D(1)=0 D(2)=1 int n;
int D[][]; void ad(int now){
int x=;
for(int i=;i<;i++){
D[now][i]=D[now-][i]+D[now-][i]+x;
x=D[now][i]/;
D[now][i]%=;
}
x=;
for(int i=;i<;i++){
D[now][i]=D[now][i]*(now-)+x;
x=D[now][i]/;
D[now][i]%=;
}
} signed main(){
scanf("%d",&n);
D[][]=;
if(n==||n==){
printf("%d",n-);
return ;
}
for(int i=;i<=n;i++)
ad(i);
int lenc=;
while(D[n][lenc]==) lenc--;
while(lenc) printf("%d",D[n][lenc--]);
return ;
}

[HAOI2016] 放棋子及错排问题的更多相关文章

  1. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  2. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  3. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  4. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  5. [Haoi2016]放棋子 题解

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 285[Submit][Status] ...

  6. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  7. BZOJ4563:[HAOI2016]放棋子——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4563 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列 ...

  8. BZOJ 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 389  Solved: 248[Submit][Status][Discuss] Descriptio ...

  9. BZOJ——T 4563: [Haoi2016]放棋子

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status][Discuss] Descriptio ...

随机推荐

  1. JVM笔记2-Java虚拟机内存管理简介

    java虚拟机内存管理图如下图所示: 1.线程共享区,是所有的线程所共用的,线程共享区有一下几个组成: 1.方法区: 1.运行时常量池,已经被虚拟机加载的类信息(1.类的版本信息,2.字段,3.方法, ...

  2. Web渗透测试(sql注入 access,mssql,mysql,oracle,)

    Access数据库注入: access数据库由微软发布的关系型数据库(小型的),安全性差. access数据库后缀名位*.mdb, asp中连接字符串应用-- "Driver={micros ...

  3. Android开发之仿微信显示更多文字的View

    最近开发需求中要模仿微信朋友圈文章的展开收起功能,网上找了找,发现都有问题,于是乎自己在前辈的基础上进行了一定量的修改,下边将源码贴出来供大家参考:1.主Activity布局文件就不粘贴了,很简单,就 ...

  4. vc6.0转vs2005中字符串的问题

    简单一点:就是project->Property->Configuration Property-->general-->Character Set:No Set即可.详细分析 ...

  5. strcmp函数实现

    /* 功能:比较字符串s1和s2大小. 一般形式:int strcmp(字符串1,字符串2) 说明: 当s1<s2时,返回-1 当s1=s2时,返回 0 当s1>s2时,返回 1 即两个字 ...

  6. MyEclipse中修改项目运行地址栏中项目名称

    MyEclipse中修改项目运行地址栏中项目名称 1.如果出现从SVN上检出的项目名称跟运行地址栏中的项目名称不一致, 可以通过以下步骤进行修改 项目鼠标右键,单击"Properties&q ...

  7. HTML5中的checkbox

    HTML5中的checkbox 1.选中checkbox (1)<input type="checkbox" checked/> (2)<input type=& ...

  8. python 实现多层目录文件查找

    本文针对多层目录下文件的查找. 利用 os模块的基本操作,并利用递归的思想实现了目录多层查找. 代码如下: import os #dir_name: 处理文件的起始目录 def count_file( ...

  9. freemarker之list遍历(八)

    1.设置数据源 /** * * @Title:student * @Description: * @param:@param name * @return: void * @throws */ pri ...

  10. RobotFramework下的http接口自动化Set Request Body 关键字的使用

    Set Request Body关键字用来设置http 请求时的body 信息,尤其是在post 请求时,经常需要用到这个关键字. 该关键字接收一个参数,[ body ] 示例1:登录博客园(http ...