[HNOI 2012]集合选数
Description
对于任意一个正整数 \(n\) ,求出集合 \(\{1,2,\cdots,n\}\) 的满足约束条件“若 \(x\) 在该子集中,则 \(2x\) 和 \(3x\) 不能在该子集中”的子集的个数。
\(n\leq 100000\)
Solution
容易发现对于每一个与 \(2,3\) 互质的数 \(k\) ,我们构造一个 \(p\times q\) 的矩阵,该矩阵的第 \(i\) 行第 \(j\) 列表示数值 \(k\cdot 2^i3^j\) 。由于数值要 \(\leq n\) ,所以这个矩阵不是完整的。
显然对于这个矩阵,我选取的数不能相邻,由于 \(p,q\) 很小,可以用状压 \(DP\) 实现,来计算总方案数。
同样对于每个这样的 \(k\) 。可以随意组合所以将方案数乘起来就好了。
Code
//It is made by Awson on 2018.3.9
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int yzh = 1000000001, N = 200000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); }
int n, ans = 1, bin[20], f[20][N+5];
void work() {
read(n); bin[0] = 1; for (int i = 1; i <= 19; i++) bin[i] = bin[i-1]<<1;
for (int id = 1; id <= n; id++)
if (id%2 && id%3) {
int last = 0, now, tmp = id, k; f[0][0] = 1;
for (k = 1; tmp <= n; k++) {
for (now = 0; now <= 19; now++) if (tmp*bin[now] > n) break;
for (int i = 0; i < bin[now]; i++)
if ((i&(i>>1)) == 0) {
f[k][i] = 0;
for (int j = 0; j < bin[last]; j++)
if ((i&j) == 0 && (j&(j>>1)) == 0)
f[k][i] = (f[k][i]+f[k-1][j])%yzh;
}
last = now, tmp *= 3;
}
int t = 0;
for (int i = 0; i < bin[last]; i++) if ((i&(i>>1)) == 0) t = (t+f[k-1][i])%yzh;
ans = 1ll*ans*t%yzh;
}
writeln(ans);
}
int main() {
work(); return 0;
}
[HNOI 2012]集合选数的更多相关文章
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- 2734: [HNOI2012]集合选数
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的 ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- bzoj2734【HNOI2012】集合选数
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 831 Solved: 487 [Submit][Stat ...
- 状压DP之集合选数
题目 [HNOI2012]集合选数 <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不 ...
随机推荐
- (译文)开始学习Vue——构建你的第一个Vue应用
我们要构建如下组件:(最终代码在这里:https://codesandbox.io/s/38k1y8x375) 开始 Vue是支持单文件组件的,但是我们不准备这么做.你也可以构建一个全局的组件,通过V ...
- 2017-2018-1 Java演绎法 第六七周 作业
团队任务:修改完善<需求规格说明书>等 团队组长:袁逸灏 本次编辑:刘伟康 修改完善上周提交的需求规格说明书 [markdown 链接] [pdf 链接] 不足之处:仅就现在的问题来看,结 ...
- 2018上c语言第0次作业
随笔: 1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题,每个问题的答案不少于500字: (1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答:对此问题 ...
- java实现同步的两种方式
同步是多线程中的重要概念.同步的使用可以保证在多线程运行的环境中,程序不会产生设计之外的错误结果.同步的实现方式有两种,同步方法和同步块,这两种方式都要用到synchronized关键字. 给一个方法 ...
- 算法第四版学习笔记之优先队列--Priority Queues
软件:DrJava 参考书:算法(第四版) 章节:2.4优先队列(以下截图是算法配套视频所讲内容截图) 1:API 与初级实现 2:堆得定义 3:堆排序 4:事件驱动的仿真 优先队列最重要的操作就是删 ...
- 学习ASP.NET Core Razor 编程系列四——Asp.Net Core Razor列表模板页面
学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...
- Ajax 的onreadystatechange事件注意事项.
<script type="text/javascript"> function createXHR() { var request = false; try { re ...
- Django-rest-framework源码分析----权限
添加权限 (1)API/utils文件夹下新建premission.py文件,代码如下: message是当没有权限时,提示的信息 # utils/permission.py class SVIPPr ...
- 测试驱动开发实践3————从testList开始
[内容指引] 运行单元测试: 装配一条数据: 模拟更多数据测试列表: 测试无搜索列表: 测试标准查询: 测试高级查询. 一.运行单元测试 我们以文档分类(Category)这个领域类为例,示范如何通过 ...
- salesforce零基础学习(八十七)Apex 中Picklist类型通过Control 字段值获取Dependent List 值
注:本篇解决方案内容实现转自:http://mysalesforceescapade.blogspot.com/2015/03/getting-dependent-picklist-values-fr ...