[Luogu 3810]三维偏序
Description
有 $ n $ 个元素,第 $ i $ 个元素有 $ a_i $ 、$ b_i $ 、$ c_i $ 三个属性,设 $ f(i) $ 表示满足 $ a_j \leq a_i $ 且 $ b_j \leq b_i $ 且 $ c_j \leq c_i $ 的 $ j $ 的数量。
对于 $ d \in [0, n) $ ,求 $ f(i) = d $ 的数量
Input
第一行两个整数 $ n $ 、$ k $ ,分别表示元素数量和最大属性值。
之后 $ n $ 行,每行三个整数 $ a_i $ 、$ b_i $ 、$ c_i $ ,分别表示三个属性值。
Output
输出 $ n $ 行,第 $ d + 1 $ 行表示 $ f(i) = d $ 的 $ i $ 的数量。
Sample Input
10 3
3 3 3
2 3 3
2 3 1
3 1 1
3 1 2
1 3 1
1 1 2
1 2 2
1 3 2
1 2 1
Sample Output
3
1
3
0
1
0
1
0
0
1
Hint
$ 1 \leq n \leq 100000, 1 \leq k \leq 200000 $
题解
$CDQ$ 分治模板题。
三维:
第一维 $sort$ 排序
第二维 $CDQ$
第三维 $bittree$
我们将第一维排序后,我们用递归实现 $CDQ$ ,取 $mid$ ,算出 $mid$ 左边对 $mid$ 右边的贡献。
用 $bittree$ 来维护最后一维的大小关系。
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) ((x)&-(x))
using namespace std;
const int N=;
const int K=; struct point
{
int a,b,c,cnt,ans;
}g[N+];
int n,m,ans[N+],c[K+],num;
bool cmp2(point x,point y) {return x.b==y.b ? x.c<y.c:x.b<y.b;}
bool cmp1(point x,point y) {return x.a==y.a ? cmp2(x,y):x.a<y.a;}
void Add(int x,int y) {for (;x<=m;x+=lowbit(x)) c[x]+=y;}
int Count(int x)
{
int r=;
for (;x;x-=lowbit(x)) r+=c[x];
return r;
}
void CDQ(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>;
CDQ(l,mid);
CDQ(mid+,r);
sort(g+l,g+mid+,cmp2);
sort(g+mid+,g+r+,cmp2);
int t1=l,t2=mid+;
while(t2<=r)
{
while(t1<=mid&&g[t1].b<=g[t2].b)
{
Add(g[t1].c,g[t1].cnt);
t1++;
}
g[t2].ans+=Count(g[t2].c);
t2++;
}
for (int i=l;i<=t1-;i++) Add(g[i].c,-g[i].cnt);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++) scanf("%d%d%d",&g[i].a,&g[i].b,&g[i].c),g[i].cnt=;
sort(g+,g+n+,cmp1);
for (int i=;i<=n;i++)
{
int k=i+;
while(g[i].a==g[k].a&&g[i].b==g[k].b&&g[i].c==g[k].c) k++;
num++;
k--;
g[i].cnt+=k-i;
g[num]=g[i];
i=k;
}
CDQ(,num);
for (int i=;i<=num;i++) ans[g[i].ans+g[i].cnt-]+=g[i].cnt;
for (int i=;i<n;i++) printf("%d\n",ans[i]);
return ;
}
[Luogu 3810]三维偏序的更多相关文章
- luogu P3810 三维偏序(陌上花开)cdq分治
题目链接 思路 对一维排序后,使用$cdq$分治,以类似归并排序的方法处理的二维,对于满足$a[i].b \leq a[j].b$的点对,用树状数组维护$a[i].c$的数量.当遇到$a[i].b&g ...
- Luogu 3810 & BZOJ 3262 陌上花开/三维偏序 | CDQ分治
Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的 ...
- BZOJ3262:陌上花开 & 洛谷3810:三维偏序——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=3262 https://www.luogu.org/problemnew/show/3810 Desc ...
- Luogu P3810 【模板】三维偏序(陌上花开)(CDQ分治)
题目 以三维偏序为例来讲一下CDQ分治. CDQ的本质就是把一个序列分成两段,计算左边对右边的贡献,然后分治. 不过一般都是先分治到底再从下往上算,这样可以先归并再算. 比如这道题,我们先按第一维排序 ...
- 洛谷P3810-陌上开花(三维偏序, CDQ, 树状数组)
链接: https://www.luogu.org/problem/P3810#submit 题意: 一个元素三个属性, x, y, z, 给定求f(b) = {ax <= bx, ay < ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
- 洛谷P3810 陌上花开 CDQ分治(三维偏序)
好,这是一道三维偏序的模板题 当然没那么简单..... 首先谴责洛谷一下:可怜的陌上花开的题面被无情的消灭了: 这么好听的名字#(滑稽) 那么我们看了题面后就发现:这就是一个三维偏序.只不过ans不加 ...
- BZOJ3262/洛谷P3810 陌上花开 分治 三维偏序 树状数组
原文链接http://www.cnblogs.com/zhouzhendong/p/8672131.html 题目传送门 - BZOJ3262 题目传送门 - 洛谷P3810 题意 有$n$个元素,第 ...
随机推荐
- CSS的盒子模型有哪些,区别是什么
1)盒模型: 内容(content).填充(padding).边界(margin). 边框(border) 2)有两种, IE 盒子模型.标准 W3C 盒子模型:IE的content部分包含了 b ...
- gitignore忽略规则
我们用git提交本地代码时,有些文件或日志是不需要提交的,这个时候可以用.gitignore来解决这个问题: 首先,我们需要创建一个.gitignore文件,用命令输入 touch .gitignor ...
- beta版本复审
C++team复审 小组 优点 缺点 打分 MyGod小组 MyGod团队开发了一个让武汉大学的学生能够方便地了解校内二手物品交易信息,并进行相应的交易的安卓app.出发点不错,有创新点.使用了一下他 ...
- 【iOS】swift 排序Sort函数用法(包含NSDictionary排序)
用了几分钟做的简单翻译 一个例子 直接贴代码,不过多解释 //这是我们的model class imageFile { var fileName = String() var fileID = Int ...
- 【作业】HansBug的前三次OO作业分析与小结
OO课程目前已经进行了三次的作业,容我在本文中做一点微小的工作. 第一次作业 第一次作业由于难度不大,所以笔者程序实际上写的也比较随意一些.(点击就送指导书~) 类图 程序的大致结构如下: 代码分析 ...
- VMware虚拟机误删除vmdk文件后如何恢复?
故障描述: Dell R710系列服务器(用于VMware虚拟主机),Dell MD 3200系列存储(用于存放虚拟机文件),VMware ESXi 5.5版本,因意外断电,导致某台虚拟机不能正常启动 ...
- vue class与style 绑定详解——小白速会
一.绑定class的几种方式 1.对象语法 直接看例子: <div id="app3"> <div :class="{'success':isSucce ...
- nyoj 复杂度
复杂度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 for(i=1;i<=n;i++) for(j=i+1;j<=n;j++) for(k=j+1;k ...
- phalcon框架命名空间
命名空间第一影像就是实际上就相当宏定义,就是需要把一个很长的带有路径的类文件指定一个空间,然后就可直接用简单简写模式 当然如果是外部文件需要首先引入外部文件,如果不引入外部文件还是会报错.一般最会出错 ...
- 第一次PTA作业
题目6-1拆分实数整数及小数部分 1设计思路 (1) 第一步:阅读题目要求及所给部分. 第二步:根据题意补全相应函数. (2)流程图 无 2.实验代码 #include <stdio.h> ...