BZOJ_4765_普通计算姬_分块

Description

"奋战三星期,造台计算机"。小G响应号召,花了三小时造了台普通计算姬。普通计算姬比普通计算机要厉害一些
。普通计算机能计算数列区间和,而普通计算姬能计算树中子树和。更具体地,小G的计算姬可以解决这么个问题
:给定一棵n个节点的带权树,节点编号为1到n,以root为根,设sum[p]表示以点p为根的这棵子树中所有节点的权
值和。计算姬支持下列两种操作:
1 给定两个整数u,v,修改点u的权值为v。
2 给定两个整数l,r,计算sum[l]+sum[l+1]+....+sum[r-1]+sum[r]
尽管计算姬可以很快完成这个问题,可是小G并不知道它的答案是否正确,你能帮助他吗?

Input

第一行两个整数n,m,表示树的节点数与操作次数。
接下来一行n个整数,第i个整数di表示点i的初始权值。
接下来n行每行两个整数ai,bi,表示一条树上的边,若ai=0则说明bi是根。
接下来m行每行三个整数,第一个整数op表示操作类型。
若op=1则接下来两个整数u,v表示将点u的权值修改为v。
若op=2则接下来两个整数l,r表示询问。
N<=10^5,M<=10^5
0<=Di,V<2^31,1<=L<=R<=N,1<=U<=N

Output

对每个操作类型2输出一行一个整数表示答案。

Sample Input

6 4
0 0 3 4 0 1
0 1
1 2
2 3
2 4
3 5
5 6
2 1 2
1 1 1
2 3 6
2 3 5

Sample Output

16
10
9

对结点编号进行分块,树状数组维护dfs序。
先预处理出来i到根路径上经过了多少第j块内的点,预处理时间复杂度$O(n\sqrt n)$
修改时对所有块直接用刚才预处理出来的打标记,同时也要在树状数组上修改出来。
查询时整块直接加上标记,零散的在树状数组上暴力。
总时间复杂度$O(n\sqrt n logn)$,可过。
其实也可以对那些零散的修改$O(\sqrt n)$查询$O(1)$,能做到$O(n\sqrt n)$不过我写不过带log的。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
#define N 100050
typedef unsigned long long ll;
int size,block,L[N],R[N],pos[N],n,m;
int dep[N],fa[N],head[N],to[N<<1],nxt[N<<1],val[N],cnt,root,poi[N][350],dfn[N],son[N];
ll sum[N],tag[N],s[N],c[N];
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
void fix(int x,ll v) {
for(;x<=n;x+=x&(-x)) c[x]+=v;
}
ll inq(int x) {
ll re=0;
for(;x;x-=x&(-x)) re+=c[x]; return re;
}
void dfs(int x,int y) {
int i,j; fa[x]=y; dep[x]=dep[y]+1; sum[x]=val[x]; dfn[x]=++dfn[0];
poi[x][pos[x]]++;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
for(j=1;j<=block;j++) poi[to[i]][j]=poi[x][j];
dfs(to[i],x);
sum[x]+=sum[to[i]];
}
}
son[x]=dfn[0];
}
void modify(int x,int y) {
int i;
for(i=1;i<=block;i++) tag[i]+=1ll*y*poi[x][i];
}
ll query(int x,int y) {
int p=pos[x],q=pos[y],i;
ll ans=0;
if(p==q) {
for(i=x;i<=y;i++) ans+=inq(son[i])-inq(dfn[i]-1);
}else {
for(i=p+1;i<q;i++) ans+=s[i]+tag[i];
for(i=x;i<=R[p];i++) {
ans+=inq(son[i])-inq(dfn[i]-1);
}
for(i=L[q];i<=y;i++) {
ans+=inq(son[i])-inq(dfn[i]-1);
}
}
return ans;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,opt,j; size=sqrt(n);
block=n/size;
for(i=1;i<=block;i++) {
L[i]=R[i-1]+1; R[i]=size*i;
for(j=L[i];j<=R[i];j++) {
pos[j]=i;
}
}
if(R[block]!=n) {
block++; L[block]=R[block-1]+1; R[block]=n;
for(i=L[block];i<=n;i++) pos[i]=block;
} for(i=1;i<=n;i++) scanf("%d",&i[val]);
for(i=1;i<=n;i++) {
scanf("%d%d",&x,&y);
if(x) {
add(x,y); add(y,x);
}else root=y;
}
dfs(root,0);
for(i=1;i<=n;i++) s[pos[i]]+=sum[i],fix(dfn[i],val[i]);
while(m--) {
scanf("%d%d%d",&opt,&x,&y);
if(opt==1) {
modify(x,-val[x]); fix(dfn[x],-val[x]);val[x]=y;
modify(x,val[x]); fix(dfn[x],val[x]);
}else {
printf("%llu\n",query(x,y));
}
}
}

BZOJ_4765_普通计算姬_分块+dfs序+树状数组的更多相关文章

  1. 计蒜客A1998 Ka Chang (分块+dfs序+树状数组)

    题意 给你一个\(1e5\)的有点权的树,有\(1e5\)个操作: 1.给第\(x\)层的点加上\(y\) 2.求以\(x\)为根的子树的点权和 思路 首先处理出层数为x的所有点 操作2一般都是用df ...

  2. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  3. [BZOJ1103][POI2007]大都市meg dfs序+树状数组

    Description 在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了.不过,她经常回忆起以前在乡间漫步的情景.昔日,乡下有依次编号为1..n ...

  4. 【bzoj3653】谈笑风生 DFS序+树状数组

    题目描述 给出一棵以1为根的有根树,q次询问,每次询问给出a和k,求点对 (b,c) 的数目,满足:a.b.c互不相同,b与a距离不超过k,且a和b都是c的祖先. 输入 输入文件的第一行含有两个正整数 ...

  5. HDU 3887:Counting Offspring(DFS序+树状数组)

    http://acm.hdu.edu.cn/showproblem.php?pid=3887 题意:给出一个有根树,问对于每一个节点它的子树中有多少个节点的值是小于它的. 思路:这题和那道苹果树是一样 ...

  6. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  7. BZOJ 2434: [Noi2011]阿狸的打字机( AC自动机 + DFS序 + 树状数组 )

    一个串a在b中出现, 那么a是b的某些前缀的后缀, 所以搞出AC自动机, 按fail反向建树, 然后查询(x, y)就是y的子树中有多少是x的前缀. 离线, 对AC自动机DFS一遍, 用dfs序+树状 ...

  8. 【bzoj3881】[Coci2015]Divljak AC自动机+树链的并+DFS序+树状数组

    题目描述 Alice有n个字符串S_1,S_2...S_n,Bob有一个字符串集合T,一开始集合是空的. 接下来会发生q个操作,操作有两种形式: “1 P”,Bob往自己的集合里添加了一个字符串P. ...

  9. 2018.10.20 NOIP模拟 巧克力(trie树+dfs序+树状数组)

    传送门 好题啊. 考虑前面的32分,直接维护后缀trietrietrie树就行了. 如果#号不在字符串首? 只需要维护第一个#前面的字符串和最后一个#后面的字符串. 分开用两棵trie树并且维护第一棵 ...

随机推荐

  1. Solr 新增、更新、删除索引

    solr-admin新增索引 [索引中无则新增,有则更新] 1.在doc标签和field标签中增加权重(boost),增加权重后,可以在搜索的时候做权重过滤. <add> <doc ...

  2. linux swing 乱码

    转载 Linux下关于解决JavaSwing中文乱码的情况 redhed 貌似没出现乱码 本身就jdk就支持中文 红旗linux  suse等都不支持,需要自己手工配置,解决办法: 第一种方法: 1. ...

  3. Webapck项目开发基本构建及配置

    1.创建项目文件夹 myapp 手动创建myapp,或mkdir myapp 2.cd myapp 3.npm init (初始化项目) 4.一路回车(关于项目信息的填写,可以不写,一路回车即可) 可 ...

  4. 【转】火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法

    关于 GCJ-02 和 BD-09 ,请参考 http://developer.baidu.com/map/question.htm#qa0043 . 算法代码如下,其中 bd_encrypt 将 G ...

  5. 实例解析Collections源码,Iterator和ListIterator

    比如一个视频或文章有多个页面标签设置,我们在看一篇文章或一个视频时,底部有为你推荐栏目. 如何根据这个文章或视频的标签,来实现这个推荐栏目呢. public List<VideoInfoVo&g ...

  6. What’s new in Channels 2 摘译

    最近准备在一个老Django项目上启用Channels,Channels于今年2月2日发布2.0版本,这个版本包含很多不向前兼容的特性,为了新特性调研的需要,也为了方便社区,我新版本的What's N ...

  7. Google Bigtable (中文版)

    http://dblab.xmu.edu.cn/post/google-bigtable/ Abstract BigTable是一个分布式存储系统,它可以支持扩展到很大尺寸的数据:PB级别的数据,包含 ...

  8. Golang 环境配置建议(Atom)

    http://www.philo.top/2015/02/06/golang-%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AE%E5%BB%BA%E8%AE%AE/ 开发环境的 ...

  9. SpringMVC配置多个数据源

    多数据源,说白了,就是多数据库. 想要实现多数据库查询,只需简单四步即可实现! 第一步: 配置 jdbc.properties: # MySQL #========================== ...

  10. 如何优雅的关闭Java线程池

    面试中经常会问到,创建一个线程池需要哪些参数啊,线程池的工作原理啊,却很少会问到线程池如何安全关闭的. 也正是因为大家不是很关注这块,即便是工作三四年的人,也会有因为线程池关闭不合理,导致应用无法正常 ...