题目大意:

  读入n。

  第一行输出“1”(不带引号)。

  第二行输出$\sum_{i=1}^n i\phi(i)$。

题解:

  所以说那个$\sum\mu$是在开玩笑么=。=

  设$f(n)=n\phi(n),F(n)=\sum_{i=1}^{n}f(i)$。

  设$g=(f*id)$,则$g(n)=\sum_{d|n}id(\frac{n}{d})f(d)=n^2$。

  设$G(n)=\sum_{i=1}^n g(i)=\frac{n(n+1)(2n+1)}{6}$。

  同时将$G$完全展开我们得到:

$G(n)=\sum_{i=1}^{n}\sum_{d|i}d*f(\frac{i}{d})$

$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)$

$=\sum_{d=1}^{n}dF(\lfloor \frac{n}{d} \rfloor)$

  由此可得:$$F(n)=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n}F(\lfloor \frac{n}{i} \rfloor)i$$

代码:

 

 #define Troy

 #include <bits/stdc++.h>

 using namespace std;

 inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int N=1e6+,mod=1e9+; int phi[N],prim[N],num,vis[N],F[N],f[N],n,re6=,re2=;
map<int,int> mp; inline int calc(int x){
if(x<N) return F[x];
else if(mp.count(x)) return mp[x];
int ret=x*1ll*(x+)%mod*(2ll*x+)%mod*re6%mod;
for(register int i=,j;i<=x;i=j+){
j=x/(x/i);
ret=(ret-(j-i+1ll)*(i+j)/%mod*calc(x/i)%mod)%mod;
if(ret<) ret+=mod;
}
return mp[x]=ret;
} int main(){
n=read();puts("");
register int i,j,k;
phi[]=;
for(i=;i<N;++i){
if(!vis[i]) prim[++num]=i,phi[i]=i-;
for(j=;(k=prim[j]*i)<N;++j){
vis[k]=true;
if(i%prim[j]){
phi[k]=phi[i]*1ll*(prim[j]-)%mod;
continue;
}
phi[k]=phi[i]*1ll*prim[j]%mod;break;
}
}
for(i=;i<N;++i) f[i]=1ll*phi[i]*i%mod,F[i]=(F[i-]*1ll+f[i])%mod;
printf("%d\n",(calc(n)+mod)%mod);
}

bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)的更多相关文章

  1. 【BZOJ4916】神犇和蒟蒻 杜教筛

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...

  2. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  3. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  4. bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】

    居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{ ...

  5. [BZOJ 4916]神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  6. 【刷题】BZOJ 4916 神犇和蒟蒻

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  7. BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演

    BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...

  8. [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)

    题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑N​j=1∑N​d(ij) ...

  9. 【XSY2731】Div 数论 杜教筛 莫比乌斯反演

    题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...

随机推荐

  1. Ubuntu 14.04 32位 JDK+ADT Bundle+NDK安装

    1. 安装JDK tar或GUI解压jdk-8u25-linux-i586.tar.gz 编辑/etc/environment文件 CLASSPATH="/home/zhouwei/jdk1 ...

  2. dom4j 解析 xml标签属性

    重写onEnd()和onStart()方法 public class XmlElementHandler implements ElementHandler { @Override public vo ...

  3. Emit方式调用方法

    object objRet = Delegate.CreateDelegate(typeof(Func<Guid, int, decimal>), inst, "HelloWor ...

  4. SpringBoot功能持续更新

    [定时任务] 1.启动总开关 @EnableScheduling加在@SpringBootApplication注解的start入口处,表示启动总开关 @SpringBootApplication @ ...

  5. JavaScript头像上传器的实现

    最近做这方面的东西,刚开始准备用一个开源项目:https://github.com/yueyoum/django-upload-avatar 后来发现这个开源组件的原设计者的定制化选项设计略显复杂,发 ...

  6. Django升级1.8的一些问题

    1.最明显的问题当然是Settings设置中关于模板的设置数据结构发生变化,这个就不细说了,你开个Django的1.8的新项目就知道怎么改了 2.migrations问题,这个问题是1.8最主要的修改 ...

  7. Effective Java 第三版——40. 始终使用Override注解

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  8. 基于puppeteer模拟登录抓取页面

    关于热图 在网站分析行业中,网站热图能够很好的反应用户在网站的操作行为,具体分析用户的喜好,对网站进行针对性的优化,一个热图的例子(来源于ptengine) 上图中能很清晰的看到用户关注点在那,我们不 ...

  9. c#语言中的Process进程类型的使用示例

    下面我们用一个简单的例子来说明如何使用 我们用vs2015新建一个解决方案,这个解决方案包含两个WINFORM窗体项目,一个是SoftWare.Test,一个是SoftWare.Update,如下图所 ...

  10. github page 配置hexo 博客 的常见错误

    缘起 最近看到好多的公众号作者推荐大家搭建自己的博客,自己手痒也搭建了一个个人博客lumang,具体过程就是一开始上网搜索一番教程,按照教程开始搭建,由于是windows的环境,同时教程也有很多的老旧 ...