bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)
题目大意:
读入n。
第一行输出“1”(不带引号)。
第二行输出$\sum_{i=1}^n i\phi(i)$。
题解:
所以说那个$\sum\mu$是在开玩笑么=。=
设$f(n)=n\phi(n),F(n)=\sum_{i=1}^{n}f(i)$。
设$g=(f*id)$,则$g(n)=\sum_{d|n}id(\frac{n}{d})f(d)=n^2$。
设$G(n)=\sum_{i=1}^n g(i)=\frac{n(n+1)(2n+1)}{6}$。
同时将$G$完全展开我们得到:
$G(n)=\sum_{i=1}^{n}\sum_{d|i}d*f(\frac{i}{d})$
$=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}f(i)$
$=\sum_{d=1}^{n}dF(\lfloor \frac{n}{d} \rfloor)$
由此可得:$$F(n)=\frac{n(n+1)(2n+1)}{6}-\sum_{i=2}^{n}F(\lfloor \frac{n}{i} \rfloor)i$$
代码:
#define Troy
#include <bits/stdc++.h>
using namespace std;
inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
}
const int N=1e6+,mod=1e9+;
int phi[N],prim[N],num,vis[N],F[N],f[N],n,re6=,re2=;
map<int,int> mp;
inline int calc(int x){
if(x<N) return F[x];
else if(mp.count(x)) return mp[x];
int ret=x*1ll*(x+)%mod*(2ll*x+)%mod*re6%mod;
for(register int i=,j;i<=x;i=j+){
j=x/(x/i);
ret=(ret-(j-i+1ll)*(i+j)/%mod*calc(x/i)%mod)%mod;
if(ret<) ret+=mod;
}
return mp[x]=ret;
}
int main(){
n=read();puts("");
register int i,j,k;
phi[]=;
for(i=;i<N;++i){
if(!vis[i]) prim[++num]=i,phi[i]=i-;
for(j=;(k=prim[j]*i)<N;++j){
vis[k]=true;
if(i%prim[j]){
phi[k]=phi[i]*1ll*(prim[j]-)%mod;
continue;
}
phi[k]=phi[i]*1ll*prim[j]%mod;break;
}
}
for(i=;i<N;++i) f[i]=1ll*phi[i]*i%mod,F[i]=(F[i-]*1ll+f[i])%mod;
printf("%d\n",(calc(n)+mod)%mod);
}
bzoj 4916: 神犇和蒟蒻 (杜教筛+莫比乌斯反演)的更多相关文章
- 【BZOJ4916】神犇和蒟蒻 杜教筛
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4916 第一个询问即求出$\sum_{i=1}^{n} { \mu (i^2)} $,考虑 ...
- BZOJ4916: 神犇和蒟蒻(杜教筛)
题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...
- [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛
题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...
- bzoj 4916: 神犇和蒟蒻【欧拉函数+莫比乌斯函数+杜教筛】
居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{ ...
- [BZOJ 4916]神犇和蒟蒻
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- 【刷题】BZOJ 4916 神犇和蒟蒻
Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...
- BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求 ...
- [bzoj 4176] Lucas的数论 (杜教筛 + 莫比乌斯反演)
题面 设d(x)d(x)d(x)为xxx的约数个数,给定NNN,求 ∑i=1N∑j=1Nd(ij)\sum^{N}_{i=1}\sum^{N}_{j=1} d(ij)i=1∑Nj=1∑Nd(ij) ...
- 【XSY2731】Div 数论 杜教筛 莫比乌斯反演
题目大意 定义复数\(a+bi\)为整数\(k\)的约数,当且仅当\(a\)和\(b\)为整数且存在整数\(c\)和\(d\)满足\((a+bi)(c+di)=k\). 定义复数\(a+bi\)的实部 ...
随机推荐
- Configure the MySQL account associate to the domain user via MySQL Windows Authentication Plugin
在此记录如何将之前一次做第三发软件在配置的过程. 将AD user通过代理映射到mysql 用户. 在Mysql官网有这样一段话: The server-side Windows authentica ...
- jQuery插件之-----弹性运动
<!doctype html><html><head><meta charset="utf-8"><title>弹性运动 ...
- java中Scanner类nextLine()和next()的区别和使用方法
转载:http://blog.csdn.net/zhiyuan_ma/article/details/51592730 在实现字符窗口的输入时,很多人更喜欢选择使用扫描器Scanner,它操作起来比较 ...
- python---购物车
购物车功能如下: 1. 输入收入多少,购买商品 2. 打印购物清单,根据清单选择商品: 3. 结算,打印购物清单及总金额 # -*- coding:utf-8 -*- # LC goods=[[1,' ...
- subclipse下svn: E200015: authentication cancelled问题的解决
今天要把新建的一个项目要share到一个Ubuntu下SVN服务上,总是让我不断的重复输入密码,实在是太要命了,点取消就报错如标题,Google了一下,最后在后面参考那篇帖子的启发下,到SVN配置里面 ...
- how to select checkbox on cli environment?
generally , u can focus on this checkbox and press blank key Ok,that's shit.
- 利用Python进行数据分析
最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析 ...
- 团队项目第二阶段个人进展——Day8
一.昨天工作总结 冲刺第八天,完成了发布页面数据与服务器数据的交互,基本实现了发布功能 二.遇到的问题 存在bug,有时候图片发布不了 三.今日工作规划 优化图片的上传机制,实现选择图片后就立即上传
- vue 使用踩坑 note
1. 如图,假如large那一行错写成 'large': item.ext_data.isLarge + '' === 'true',, 那么,编译不报错,控制台无提示,模板不输出. 2. vue的t ...
- GPU渲染流水线的简单概括
GPU流水线 主要分为两个阶段:几何阶段和光栅化阶段 几何阶段 顶点着色器 --> 曲面细分着色器(可选)----->几何着色器(可选)----->裁剪-->屏幕 ...