(luogu P3358)最长k可重区间集问题 [TPLY]
最长k可重区间集问题
题目链接 https://www.luogu.org/problemnew/show/3358
做法
所有点向下一个点连容量为k费用为0的边
l和r连容量为1费用为区间长度的边
然后跑最大流最大费用流
(最大费用就是把边权取相反数跑最小费用
最后再输出最终费用的相反数)
思考
在整张图中,只有l - >r的边有费用
而且费用为区间长度
(i->i+1费用为0)
所以跑最大费用也就是求最长区间
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#define ul unsigned long long
#define rg register int
#define ll long long
#define il inline
#define INF 2147483647
#define SZ 10000000
using namespace std;
int n,N,k,s,t,a[SZ],l[SZ],r[SZ];
/* N : 原数组大小
n : 离散化之后的数组大小
a[] : 离散数组
k : 可重迭数
l , r 所给区间左端点和右端点
*/
struct Edge{int to,nxt,w,c;}e[SZ];
int Ehead[SZ],pv[SZ],pe[SZ],Ecnt=2;
il void Eadd(int u,int v,int w,int cost)
{
e[Ecnt]=(Edge){v,Ehead[u],w,cost};
Ehead[u]=Ecnt++;
e[Ecnt]=(Edge){u,Ehead[v],0,-cost};
Ehead[v]=Ecnt++;
}
/* 加边函数
pv[i] : spfa时使得i点dis值松弛的节点
(最短路的上一节点)
pe[i] : i与pv[i]连接的边
e[i].w : 流量
e[i].c : 费用
*/
// 费用流板子 '_'↓↓↓
ll dis[SZ];
int vis[SZ];
queue <int> Q;
bool spfa()
{
memset(dis,63,sizeof(dis));
dis[s]=0; Q.push(s);
while(!Q.empty())
{
rg u=Q.front();
Q.pop();
for(rg i=Ehead[u];i;i=e[i].nxt)
{
rg v=e[i].to;
if((e[i].w)&&(dis[v]>dis[u]+e[i].c))
{
dis[v]=dis[u]+e[i].c;
pe[v]=i;
pv[v]=u;
if(!vis[v])
{
vis[v]=1;
Q.push(v);
}
}
}
vis[u]=0;
}
return dis[t]<dis[0];
}
il void costflow()
{
ll Ans=0;
while(spfa())
{
rg di=INF;
for(rg i=t;i!=s;i=pv[i])
di=min(di,e[pe[i]].w);
for(rg i=t;i!=s;i=pv[i])
{
e[pe[i]].w-=di;
e[pe[i]^1].w+=di;
Ans+=1ll*di*e[pe[i]].c;
}
}
printf("%lld",-Ans);
}
// 费用流板子 '_'↑↑↑
int main()
{
scanf("%d%d",&N,&k);
for(rg i=1;i<=N;++i)
{
scanf("%d%d",&l[i],&r[i]);
if(l[i]>r[i]) swap(l[i],r[i]);
a[i]=l[i];a[i+N]=r[i];
}
sort(a+1,a+N+N+1);
n=unique(a+1,a+N+N+1)-a-1;
for(rg i=1;i<=N;++i)
{
rg L=lower_bound(a+1,a+n+1,l[i])-a;
rg R=lower_bound(a+1,a+n+1,r[i])-a;
Eadd(L,R,1,l[i]-r[i]);
}
/* 利用unique和lower_bound离散化
原理是把输入到l[i]与r[i]出现的所有数字
排完序后利用unique去重
注意那些+1-1什么的
*/
for(rg i=1;i<n;++i)
Eadd(i,i+1,INF,0);
s=n+1;t=n+2;
Eadd(s,1,k,0);
Eadd(n,t,k,0);
costflow();
while(1);
return 0;
}
(luogu P3358)最长k可重区间集问题 [TPLY]的更多相关文章
- luogu P3358 最长k可重区间集问题
网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以 ...
- 网络流 P3358 最长k可重区间集问题
P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...
- 洛谷P3358 最长k可重区间集问题(费用流)
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 【Luogu】P3358最长k可重区间集问题(费用流)
题目链接 这题费用瘤,数据貌似还是错的. 把线段抽象抽象拆成两个点,入点表示左端,出点表示右端,连上容量为1费用-长度的边. 不相交线段随便连下,源点向拆出的原点S'连费用为0容量k,然后跑费用流. ...
- P3358 最长k可重区间集问题
题目链接 \(Click\) \(Here\) 这题的写法非常巧妙. 每个位置的点向它的下一个位置连一个容量为\(INF\)的边,从区间的左端点往右端点拉一条容量为\(1\),费用为区间长度的边,从起 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...
- 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】
同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...
- 最长k可重区间集
P3358 最长k可重区间集问题 P3357 最长k可重线段集问题 P3356 火星探险问题 P4012 深海机器人问题 P3355 骑士共存问题 P2754 [CTSC1999]家园 题目描述 ...
- 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
随机推荐
- mysql 军规 (转载)
导语 来自一线的实战经验 每一条军规背后都是血淋淋教训 不要华丽,只要实用 若有一条让你受益,慰矣 主要针对数据库开发人员 总是在灾难发生后,才想起容灾的重要性 总是在吃过亏后,才记得曾经有人提醒过 ...
- 安装RabbitMQ(一)
RabbitMQ简介 RabbitMQ 是由 LShift 提供的一个 Advanced Message Queuing Protocol (AMQP) 的开源实现,由以高性能.健壮以及可伸缩性出名的 ...
- 前端js代码优化
今天给大家分享下js代码优化的相关技巧. 1.使用"+"转换为数值 我们平时开发过程中需要将数字字符串创转为number类型,大多数都会用JavaScript parseI ...
- 一个 rsync同步文件脚本
#/bin/bash cd /root/phone echo "update guanwang phone version" git pull ]; then echo " ...
- Docker可视化管理工具Shipyard安装与配置
Shipyard简介 Shipyard是一个集成管理docker容器.镜像.Registries的系统,它具有以下特点: 1.支持多节点的集成管理 2.可动态加载节点 3.可托管node下的容器 镜像 ...
- 【mysql】 操作 收集持续更新
一个字段可能对应多条数据,用mysql实现将多行数据合并成一行数据 GROUP_CONCAT(Name SEPARATOR ',') 需注意: 1.GROUP_CONCAT()中的值为你要合并的数据的 ...
- 字符串相似度-C#
之前在做一个任务时, 需要比较字符串的相似度, 最终整理了一个出来, 以下: 1 /* 2 * Copyright (c) 2013 Thyiad 3 * Author: Thyiad 4 * Cre ...
- Android 如何进行页面传递对象
当我们从一个页面调到另一个页面的时候,需要把该页面的一些设定值也传递给下一个页面.当要传递的值很多时,我们可以传递一个对象. 页面1: Intent intent = new Intent(PageO ...
- 《android开发艺术探索》读书笔记(二)--IPC机制
接上篇<android开发艺术探索>读书笔记(一) No1: 在android中使用多进程只有一种方法,那就是给四大组件在AndroidMenifest中指定android:process ...
- uva437 DAG
直接套用DAG的思路就行. AC代码: #include<cstdio> #include<cstring> #include<algorithm> using n ...