本次实验相关信息如下:

操作系统:Ubuntu 14
Hadoop版本:2.4.0
Spark版本:1.4.0
运行前提是Hadoop与Spark均已正确安装配置
2、在Linux中生成一个文件test.txt,保存在/home/testjars/目录下
3、通过hadoop fs -put命令上传   
 hadoop fs -put /home/testjars/test.txt

4、在文件系统中查看:


(Spark1.4 官方文档中的一段)
记住路径:hdfs://localhost:9000/user/root/test.txt
端口好在hadoop安装时有配置,上传命令中若不指定上传文件夹,默认存入/user/root文件夹下
5、编写Spark的Java版WordCount程序
需要导入的jar包在SPARK_HOME/assembly/target/scala-2.10下
spark-assembly-1.4.0-hadoop2.4.0.jar如下图所示:
该jar包中包含了spark的所有依赖包,大小为132.3M
在eclipse中部分展开图如下:
6、jar包导入完成后,便可编写Java程序:
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2; import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern; public final class JavaWordCount {
  private static final Pattern SPACE = Pattern.compile(" ");   public static void main(String[] args) throws Exception {     if (args.length < 1) {
      System.err.println("Usage: JavaWordCount <file>");
      System.exit(1);
    }     //创建SparkConf,包含application的相关信息
    SparkConf sparkConf = new SparkConf().setAppName("JavaWordCount");
    //创建一个JavaSparkContext对象
    JavaSparkContext ctx = new JavaSparkContext(sparkConf);
    //textFile()方法可将本地文件或HDFS文件转换成RDD,读取本地文件需要各节点上都存在,或者通过网络共享该文件
    //读取一行
    JavaRDD<String> lines = ctx.textFile(args[0], 1);
    //flatMap与map的区别是,对每个输入,flatMap会生成一个或多个的输出,而map只是生成单一的输出
    //用空格分割各个单词,输入一行,输出多个对象,所以用flatMap
    JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
      @Override
      public Iterable<String> call(String s) {
        return Arrays.asList(SPACE.split(s));
      }
    });
    //对每个单词生成key-value对,PairFunction<T,K,V>
    //表示输入类型为T,生成的key-value对中的key类型为k,value类型为v,对本例,T=String, K=String, V=Integer(计数)
    //重写scala的Tupple2方法
    JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
      @Override
      //scala.Tuple2<K,V> call(T t)
      //Tuple2为scala中的一个对象,call方法的输入参数为T,即输入一个单词s,新的Tuple2对象的key为这个单词,计数为1
      public Tuple2<String, Integer> call(String s) {
        return new Tuple2<String, Integer>(s, 1);
      }
    });
    //调用reduceByKey方法,按key值进行reduce
    //调用Function2对象,Function2<T1,T2,R>
    //输入两个参数,T1,T2,返回R
    //若ones有<"one", 1>, <"one", 1>,会根据"one"将相同的pair单词个数进行统计,输入为Integer,输出也为Integer
    //输出<"one", 2>
    JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
      @Override
      public Integer call(Integer i1, Integer i2) {
        return i1 + i2;
      }
    });
    //将结果保存到HDFS中
    counts.saveAsTextFile(args[1]);
    //collect返回一个包含RDD内所有元素的Array
    List<Tuple2<String, Integer>> output = counts.collect();
    for (Tuple2<?, ?> tuple : output) {
      System.out.println(tuple._1() + ": " + tuple._2());
    }
    ctx.stop();
  }
}

7、将该java程序导出为jar文件,保存在/home/testjars文件夹下
8、启动spark,在SPARK_HOME/sbin文件夹下
    ./start-all.sh
   浏览器输入:localhost:8080
记住红色方框中的内容。
9、使用spark-submit命令上传任务
spark-submit命令更多参数可使用spark-submit --help进行查看
本次任务使用的命令如下:
spark-submit --master spark://chenkm-Lenovo:7077 --name JavaWordCount --class JavaWordCount --executor-memory 1G --total-executor-cores 2 /home/testjars/JavaWordCount.jar hdfs://localhost:9000/user/root/test.txt hdfs://localhost:9000/user/root/testoutput

10、运行结果如下:
在HDFS中保存:
同时在localhost:8080页面中可以看到

Spark1.4从HDFS读取文件运行Java语言WordCounts并将结果保存至HDFS的更多相关文章

  1. Spark1.4从HDFS读取文件运行Java语言WordCounts

    Hadoop:2.4.0 Spark:1.4.0 Ubuntu 14.0 1.首先启动Hadoop的HDFS系统.     HADOOP_HOME/sbin/start-dfs.sh 2.在Linux ...

  2. Hdfs读取文件到本地总结

    总结了一下三个方法:hdfs自带 按字节复制 按行复制 (在java io里还有字符复制,暂且不提) 因为hdfs自带的,不知道为什么有些场合不能用,每次能下载的个数还不一定,所以就考虑自己按照jav ...

  3. java 使用相对路径读取文件

    java 使用相对路径读取文件 1.java project环境,使用java.io用相对路径读取文件的例子: *目录结构:  DecisionTree            |___src      ...

  4. Java中读取文件

    Java中读取文件,去除一些分隔符,保存在多维数组里面 public void readFile(String filePath) { File file=new File(filePath); Ar ...

  5. Hadoop 读取文件API报错

    Exception in thread "main" org.apache.hadoop.hdfs.BlockMissingException: Could not obtain ...

  6. Spark中加载本地(或者hdfs)文件以及SparkContext实例的textFile使用

    默认是从hdfs读取文件,也可以指定sc.textFile("路径").在路径前面加上hdfs://表示从hdfs文件系统上读 本地文件读取 sc.textFile("路 ...

  7. 使用Inputstream读取文件

    在java中,能够使用InputStream对文件进行读取,就是字节流的输入.当读取文件内容进程序时,须要使用一个byte数组来进行存储,如此会有例如以下两个问题: 1.怎样建立合适大小的byte数组 ...

  8. Flume启动时报错Caused by: java.lang.InterruptedException: Timed out before HDFS call was made. Your hdfs.callTimeout might be set too low or HDFS calls are taking too long.解决办法(图文详解)

    前期博客 Flume自定义拦截器(Interceptors)或自带拦截器时的一些经验技巧总结(图文详解) 问题详情 -- ::, (agent-shutdown-hook) [INFO - org.a ...

  9. node.js fs.open 和 fs.write 读取文件和改写文件

    Node.js的文件系统的Api //公共引用 var fs = require('fs'), path = require('path'); 1.读取文件readFile函数 //readFile( ...

随机推荐

  1. ubuntu14.04拼音输入法问题的解决方法

    14.04的自带的拼音输入法,打字的时候你会发现有很大的问题,打不出来一个完整的字. 解决方法: ibus-daemon -drx   //重启ibus进程 在终端里输一次这个命令就ok了. 或者装个 ...

  2. 跟着大佬重新入门DP

    数列两段的最大字段和 POJ2479 Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 41231 Acce ...

  3. Docker常见仓库Ubuntu

    Ubuntu 基本信息 Ubuntu 是流行的 Linux 发行版,其自带软件版本往往较新一些. 该仓库提供了 Ubuntu从12.04 ~ 14.10 各个版本的镜像. 使用方法 默认会启动一个最小 ...

  4. API得到Windows版本

    API得到Windows版本 /** * Windows Version * https://msdn.microsoft.com/en-us/library/windows/desktop/dn48 ...

  5. Android广播的发送与接收

    Android广播的发送与接收 效果图 广播发送 广播分为有序广播和无序广播 有序广播与无序广播的区别 无序广播:只要是广播接收者指定了接收的事件类型,就可以接收到发送出来的广播消息.不能修改消息. ...

  6. Matplotlib Toolkits:地图绘制工具

    Matplotlib Toolkits:地图绘制工具 有没有一种可以直接在详细地图(如谷歌地图)上绘制上百万坐标点的工具???谷歌地图坐标点多了也不能绘制了. Basemap (Not distrib ...

  7. springMVC源码分析--@ModelAttribute使用及运行原理

    这一篇博客我们简单的介绍一下ModelAttribute的使用和运行原理. 1.首先@ModelAttribute是使用在方法或者上的,当使用在方法上时其作用于本身所在的Controller,在访问C ...

  8. Java学习之控制跳转语句

    控制跳转语句 控制跳转语句: (1)break:中断的意思 A:用在循环和switch语句中,离开此应用场景无意义. B:作用 a:跳出单层循环 b:跳出多层循环,需要标签语句的配合 (2)conti ...

  9. 5.0、Android Studio调试你的应用

    Android Studio包含了一个调试器,允许你调试运行在Android虚拟机或连接的Android设备的应用.通过Android Studio的调试器,你可以: 1. 选择你调试设备的app 2 ...

  10. 微信小程序的开发:通过微信小程序看前端

    前言 2016年9月22日凌晨,微信官方通过"微信公开课"公众号发布了关于微信小程序(微信应用号)的内测通知.整个朋友圈瞬间便像炸开了锅似的,各种揣测.介绍性文章在一夜里诞生.而真 ...