题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=4665

题解:

容斥,dp
令 v[i] 表示原来拥有i类糖果的人数
(一个套路,首先把每个糖果看成互不相同的,(最后再来除以 v[i]!,把同种糖果看成相同的) )
定义 dp[i][j]表示前i类糖果,有j个人的糖果和原来的一样,其他 N-j 个人暂时不拿糖果的方案数。
这个的转移如下:
对于已经确定的 i,j,枚举一个 k表示原来拥有的是第i类糖果的k个人任然拿到的是第i类糖果。
${dp[i][j]=dp[i-1][j-k]}\times{{C}_{v[i]}^{k}}\times{v[i]}\times{(v[i]-1)}\times{…}\times{(v[i]-k+1)}$
式子后面乘的东西意思是那k个人在第i类糖果中的选择方法数(每个糖果看成不一样的了)
然后就再把每一个 dp[N][i] * (N-i)! 表示剩下的人就随便选择糖果。
此时 dp[N][i]的含义即为:重新分配糖果后,至少有 i个人拿到了原来的那类糖果的方法数。
然后就是考虑容斥,答案 ANS=dp[N][0]-dp[N][1]+dp[N][2]-dp[N][3]......
最后还要把同类糖果看成相同的东西,即 ANS/=v[i]。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 2500
#define _ %mod
#define filein(x) freopen(#x".in","r",stdin)
#define fileout(x) freopen(#x".out","w",stdout)
using namespace std;
const int mod=1000000009;
int v[MAXN],dp[MAXN][MAXN],C[MAXN][MAXN],fac[MAXN],inv[MAXN];
int N,ANS;
int pow(int a,int b){
int now=1;
while(b){
if(b&1) now=(1ll*now*a)_;
a=(1ll*a*a)_; b>>=1;
}
return now;
}
int main()
{
scanf("%d",&N);
fac[0]=inv[0]=1;
for(int i=1;i<=N;i++) fac[i]=(1ll*fac[i-1]*i)_;
inv[N]=pow(fac[N],mod-2);
for(int i=N-1;i>=1;i--) inv[i]=(1ll*inv[i+1]*(i+1))_;
for(int i=0;i<=N;i++){
C[i][0]=1;
for(int j=1;j<=i;j++)
C[i][j]=(1ll*C[i-1][j-1]+C[i-1][j])_;
}
for(int i=1,x;i<=N;i++) scanf("%d",&x),v[x]++;
dp[0][0]=1;
for(int i=1;i<=N;i++)
for(int j=0;j<=N;j++)
for(int k=0;k<=v[i];k++){
if(k>j) break;
dp[i][j]=(1ll*dp[i][j]+1ll*dp[i-1][j-k]*C[v[i]][k]_*fac[v[i]]_*inv[v[i]-k])_;
}
for(int i=0;i<=N;i++){
dp[N][i]=1ll*dp[N][i]*fac[N-i]_;
if(i&1) dp[N][i]=(1ll*dp[N][i]*(-1)+mod)_;
ANS=(1ll*ANS+dp[N][i]+mod)_;
}
for(int i=1;i<=N;i++) ANS=1ll*ANS*inv[v[i]]_;
printf("%d",ANS);
return 0;
}

●BZOJ 4665 小w的喜糖的更多相关文章

  1. BZOJ 4665: 小w的喜糖

    Sol DP+容斥. 这就是一个错排的扩展...可是想到容斥却仅限于种数的容斥,如果种数在一定范围内我就会做了QAQ. 但是容斥的是一定在原来位置的个数. 发现他与原来的位置无关,可以先把每个同种的糖 ...

  2. 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 94  Solved: 53 Description 废话不多说,反正小w要发喜 ...

  3. bzoj4665小w的喜糖 dp+容斥

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 120  Solved: 72[Submit][Status][Discuss] ...

  4. bzoj4665 小w的喜糖(dp+容斥)

    4665: 小w的喜糖 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 222  Solved: 130[Submit][Status][Discuss ...

  5. [bzoj4665]小w的喜糖_二项式反演

    小w的喜糖 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665 数据范围:略. 题解: 二项式反演裸题. $f_{i,j}$表示,前$i$种钦 ...

  6. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  7. 小w的喜糖(candy)

    小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...

  8. BZOJ4665: 小w的喜糖 DP

    对于这道题,首先每个人的位置并不影响结果 所以我们可以将相同颜色糖果的人放在一块处理 设 $f_{i,j}$ 表示处理到第 $i$ 种糖果至少有 $j$ 人的糖果和原先的类型相同 枚举当前种类中不满足 ...

  9. BZOJ4665 : 小w的喜糖

    考虑枚举哪些人一定不合法,那么方案数可以通过简单的排列组合算出. 于是设$f[i][j]$表示前$i$种糖果,一共有$j$个人一定不合法的方案数,但是这样并不能保证其他人一定合法,所以需要进行容斥. ...

随机推荐

  1. scrapy crawl rules设置

    rules = [ Rule(SgmlLinkExtractor(allow=('/u012150179/article/details'), restrict_xpaths=('//li[@clas ...

  2. jQuery 写的textarea输入字数限制

    //先判断浏览器是不是万恶的IE        var bind_name = 'input';//默认事件        if (navigator.userAgent.indexOf(" ...

  3. day-3 python多线程编程知识点汇总

    python语言以容易入门,适合应用开发,编程简洁,第三方库多等等诸多优点,并吸引广大编程爱好者.但是也存在一个被熟知的性能瓶颈:python解释器引入GIL锁以后,多CPU场景下,也不再是并行方式运 ...

  4. django三种文件下载方式

    一.概述 在实际的项目中很多时候需要用到下载功能,如导excel.pdf或者文件下载,当然你可以使用web服务自己搭建可以用于下载的资源服务器,如nginx,这里我们主要介绍django中的文件下载. ...

  5. BizTalk Server 2016配置 WCF SAP Adapter

    BizTalk Server 2016配置 WCF SAP Adapter 最近公司内部需要使用BizTalk与SAP 系统进行对接,虽然SAP/PI可以以发布WebService 的方式实现与外部系 ...

  6. java stream 原理

    java stream 原理 需求 从"Apple" "Bug" "ABC" "Dog"中选出以A开头的名字,然后从中选 ...

  7. 27.C++- 智能指针

    智能指针 在C++库中最重要的类模板之一 智能指针实际上是将指针封装在一个类里,通过对象来管理指针. STL中的智能指针auto_ptr 头文件: <memory> 生命周期结束时,自动摧 ...

  8. Java基础语法<十> Jar文件

    1 JAR文件            java归档文件,压缩的            jdk/bin jar工具制作jar文件              jar程序选项 1.1清单文件         ...

  9. Paper藐小之处明察秋毫故时有物外之趣

    暂且针对第一篇叶脉提取的paper 插入图像的"图 N": 英 Times New Roman, 中 宋体, 10磅. 文末的引文: 两端对齐. 流程图框格内文字换行时, 忌: 将 ...

  10. linux如何安装django

    首先在命令行下输入python 进入界面后先importdjango 如果这一步有错,说明没有django 需要我们安装 源码安装方法: 下载源码包 https://www.djangoproject ...