题目描述

C国有n座城市,城市之间通过m条[b]单向[/b]道路连接。一条路径被称为最短路,当且仅当不存在从 它的起点到终点的另外一条路径总长度比它小。两条最短路不同,当且仅当它们包含的道路序列不同。我们需要对每条道路的重要性进行评估,评估方式为计算有多 少条不同的最短路经过该道路。现在,这个任务交给了你。

输入输出格式

输入格式:

第一行包含两个正整数n、m

接下来m行每行包含三个正整数u、v、w,表示有一条从u到v长度为w的道路

输出格式:

输出应有m行,第i行包含一个数,代表经过第i条道路的最短路的数目对[b]1000000007取模[/b]后的结果

输入输出样例

输入样例#1:
复制

4 4
1 2 5
2 3 5
3 4 5
1 4 8
输出样例#1: 复制

2
3
2
1

说明

数据规模

30%的数据满足:n≤15、m≤30

60%的数据满足:n≤300、m≤1000

100%的数据满足:n≤1500、m≤5000、w≤10000

以每一个点为起点,做一次SPFA,把在最短路上的边标记

设S到i的路径数cnt1[i],在设i到其他点的最短路数cnt2[i]

因为选出来的边构成的图无环,所以用拓扑排序来递推

cnt1[v]+=cnt1[u]

至于cnt2数组,用逆拓扑序递推

于是一条边(u,v)的ans+=cnt1[u]*cnt2[v]

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
struct Node
{
int next,to,dis;
}edge[];
int num,head[],d[];
long long cnt1[],cnt2[],ans[],n,m;
int q[];
bool vis[],pd[];
long long dist[];
int Mod=;
void add(int u,int v,int d)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=d;
}
void SPFA(int S)
{queue<int>Q;
int i,j;
memset(pd,,sizeof(pd));
memset(vis,,sizeof(vis));
memset(dist,/,sizeof(dist));
memset(d,,sizeof(d));
Q.push(S);
dist[S]=;
while (Q.empty()==)
{
int u=Q.front();
Q.pop();
vis[u]=;
for (i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if (dist[v]>dist[u]+edge[i].dis)
{
dist[v]=dist[u]+edge[i].dis;
if (vis[v]==)
{
vis[v]=;
Q.push(v);
}
}
}
}
for (i=;i<=n;i++)
for (j=head[i];j;j=edge[j].next)
if (dist[i]+edge[j].dis==dist[edge[j].to])
pd[j]=,d[edge[j].to]++;
}
void Top_sort(int S)
{int i,j;
memset(cnt1,,sizeof(cnt1));
memset(cnt2,,sizeof(cnt2));
int h=,t=;
q[]=S;
cnt1[S]=;
while (h<t)
{
h++;
int u=q[h];
for (i=head[u];i;i=edge[i].next)
{
int v=edge[i].to;
if (pd[i])
{
d[v]--;
cnt1[v]+=cnt1[u];
cnt1[v]%=Mod;
if (d[v]==)
{
t++;
q[t]=v;
}
}
}
}
for (i=t;i>=;i--)
{
int u=q[i];
cnt2[u]++;
for (j=head[u];j;j=edge[j].next)
if (pd[j])
{
int v=edge[j].to;
cnt2[u]+=cnt2[v];
cnt2[u]%=Mod;
}
}
for (i=;i<=n;i++)
for (j=head[i];j;j=edge[j].next)
if (pd[j])
{
int v=edge[j].to;
ans[j]+=cnt1[i]*cnt2[v];
ans[j]%=Mod;
}
}
int main()
{int i,u,v,d;
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&d);
add(u,v,d);
}
for (i=;i<=n;i++)
{
SPFA(i);
Top_sort(i);
}
for (i=;i<=m;i++)
printf("%lld\n",ans[i]);
}

[HAOI2012]道路的更多相关文章

  1. 洛谷 P2505 [HAOI2012]道路 解题报告

    P2505 [HAOI2012]道路 题目描述 C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它 ...

  2. JZYZOJ1525 HAOI2012道路 堆优化的dijkstra+pair

    From Tyvj Guest ☆[haoi2012]道路                 描述 Description     C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当 ...

  3. [HAOI2012]道路(最短路DAG上计数)

    C国有n座城市,城市之间通过m条[b]单向[/b]道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每 ...

  4. 洛谷P2505 [HAOI2012]道路(最短路计数)

    传送门 早上模拟赛考这题,结果竟然看错题目了orz 然后下午看完题解自己做的时候空间开小了白WA了好久orz 首先,如果以$S$为起点,一条边$(u,v)$在最短路上,则$dis[u]+edge[i] ...

  5. 洛谷P2505||bzoj2750 [HAOI2012]道路 && zkw线段树

    https://www.luogu.org/problemnew/show/P2505 https://www.lydsy.com/JudgeOnline/problem.php?id=2750 神奇 ...

  6. P2505 [HAOI2012]道路

    传送门 统计每条边被最短路经过几次,点数不大,考虑计算以每个点为起点时对其他边的贡献 对于某个点 $S$ 为起点的贡献,首先跑一遍最短路,建出最短路的 $DAG$ 考虑 $DAG$ 上的某条边被以 $ ...

  7. 题解 [HAOI2012]道路

    题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条边的有向图,问每一条边在多少个最短路径中出现. \(n\le 1500,m\le 5000\) 思路 算我孤陋寡闻了... 很显然,我们 ...

  8. test20190829 神大校赛模拟

    100+100+0=200,聪明搬题人题面又出锅了. 最短路径(path) 给定有向图,包含 n 个节点和 m 条有向边. 一条A 到 B 的路径是最短路径当且仅当不存在另一条从A 到 B 的路径比它 ...

  9. BZOJ2752: [HAOI2012]高速公路(road)

    2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][ ...

随机推荐

  1. 海外仓系统 COD货到付款到付功能

    全球还有很多国家买家网购选择货到付款方式,例如东南亚的越南.泰国.印度尼西亚,中东的阿联酋.沙特等国家.在这些国家建立海外仓需要需要具备COD货到付款功能,麦哲伦海外仓系统已经支持COD货到到付结算相 ...

  2. 听翁恺老师mooc笔记(1)--为何选择学习C

    知识点1:众多编程语言,为何选择C? 现在我们的同学喜欢java,也参加很多java的培训班,java是比较热门,但是C语言在工业界依然有重要的地位,在很多领域无可替代,几乎所有和硬件打交道的地方都得 ...

  3. 网络1711班 C语言第八次作业批改总结

    网络1711班 C语言第七次作业批改总结 最近在忙一些琐事,没能及时批改大家的作业,连续两次作业总结也没有很用心写,在这要给大家say sorry. 1.本次作业评分细则 1.1 基本要求(1分) 按 ...

  4. C语言第二次博客作业

    一.PTA实验作业 题目1:计算分段函数[2] 本题目要求计算下列分段函数f(x)的值: 1.实验代码 int main (void) { double x,y; scanf("%lf&qu ...

  5. Flask 学习 十六 部署

    部署流程 manage.py 部署命令 每次安装升级只需运行deploy命令即可完成操作 @manager.command def deploy(): """执行部署任务 ...

  6. java克隆之深拷贝与浅拷贝

    版权声明:本文出自汪磊的博客,转载请务必注明出处. Java深拷贝与浅拷贝实际项目中用的不多,但是对于理解Java中值传递,引用传递十分重要,同时个人认为对于理解内存模型也有帮助,况且面试中也是经常问 ...

  7. Scala 对象

    1. 单例对象 对于任何你在Java中会使用单例对象的地方, 在scala中都可以使用对象来实现; scala字段没有静态方法或者静态字段, 可以使用object语法结构达到同样的效果,对象(obje ...

  8. 14-TypeScript简单工厂模式

    在TypeScript中,要调用功能,通常在调用方通过实例化被调用方对象来调用相关方法,但这种实现在调用方和被调用方形成了强耦合的关系. 另外如果被调用方有种实现,在调用方需要根据场景去实例化不同的类 ...

  9. 什么是KMP算法?KMP算法推导

    花了大概3天时间,了解,理解,推理KMP算法,这里做一次总结!希望能给看到的人带来帮助!! 1.什么是KMP算法? 在主串Str中查找模式串Pattern的方法中,有一种方式叫KMP算法 KMP算法是 ...

  10. java 实现多文件打包下载

    jsp页面js代码: function downloadAttached(){ var id = []; id.push(infoid); var options = {}; options.acti ...