The sequence is generated by the following scheme.

1. First, write down 1, 2 on a paper.
2. The 2nd number is 2, write down 2 2’s (including the one originally on the paper). The paper thus has 1, 2, 2 written on it.
3. The 3rd number is 2, write down 2 3’s. 1, 2, 2, 3, 3 is now shown on the paper.
4. The 4th number is 3, write down 3 4’s. 1, 2, 2, 3, 3, 4, 4, 4 is now shown on the paper.

5. The procedure continues indefinitely as you can imagine. 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, . . . .

所求答案为前n项i*f[i]的和,f[i] 有i个,所以1e9大概需要算到5e5就行(参考别人的思路),

upper_bound查找(好像是二分查找),自己按思路写的最开始用的for查找,发现比别人慢很多,然后才注意到这个函数,以前虽然知道,但并没怎么用过- -。

预处理:sum存到i时数的个数,g保存到i最后一个时的i*f[ i ]值。因为n找到后不一定是i的最后一个,再填上多出部分即可

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<functional>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int maxn=5e5; int a[maxn];
ll sum[maxn];
int g[maxn]; int su(int a,int b)
{
int ans =(ll)(a+b)*(b-a+1)/2%mod;
return ans;
} int main()
{
a[1] = sum[1] = g[1] = 1;
sum[2] = 3;
g[2] = 11;
a[2] = a[3] = 2;
int cnt = 3;
for(int i = 3; i < maxn; i++)
{
for(int j = 0; j < a[i]; j++)
{
if(cnt == maxn)
break;
a[++cnt] = i;
}
sum[i] = (sum[i-1] + a[i]);
g[i] = (g[i-1]+ (ll)i*su(sum[i-1]+1,sum[i])) % mod;
} int T,n,i;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int tmp = n;
int cur;
for(i = 1; i < maxn; i++)
{
if(sum[i]>n){
cur = i-1;
break;
}
} ll ans = g[cur] + (ll)(cur+1)*su(sum[cur]+1,tmp)%mod;
printf("%d\n",ans%mod);
} return 0;
}

  

hdu 5439(找规律)的更多相关文章

  1. hdu 5051 找规律?+大trick

    http://acm.hdu.edu.cn/showproblem.php?pid=5051 打表找规律 据说是http://zh.wikipedia.org/wiki/%E6%9C%AC%E7%A6 ...

  2. HDU 4731 找规律,打表

    http://acm.hust.edu.cn/vjudge/contest/126262#problem/D 分为3种情况,n=1,n=2,n>=3 其中需要注意的是n=2的情况,通过打表找规律 ...

  3. 汉诺塔问题hdu 2065——找规律

    这类题目就是纸上模拟,找规律. 问题描述:在一块铜板上有三根杆,目的是将最左边杆上的盘全部移到右边的杆上,条件是不允许直接从最左(右)边移到最右(左)边(每次移动一定是移到中间杆或从中间移出),也不允 ...

  4. hdu 5229 找规律

    假设选择了字符串a和b: 假设两人都按照最聪明的策略,那么观察一下可以找出规律:当a和b的字符串长度之和为奇数的时候zcc会败. 另外当a==b的时候zcc也会败(当时做的时候忘了这个了T^T) 接下 ...

  5. HDU 2147 找规律博弈

    题目大意: 从右上角出发一直到左下角,每次左移,下移或者左下移,到达左下角的人获胜 到达左下角为必胜态,那么到达它的所有点都为必败态,每个点的局势都跟左,下,左下三个点有关 开始写了一个把所有情况都计 ...

  6. HDU 1564 找规律博弈

    题目大意是: 从n*n的方格角落的一个起点出发,每次移到上下左右一个未曾到达过的位置,谁不能走了谁就输了 想了好久都想不出,看了大神的题解 Orz了 果然博弈不是脑残的游戏啊... 这里从起点出发,将 ...

  7. 2019CCPC网络赛 HDU 6702——找规律

    题意 给定 $A,B$(都是正整数),求使得 $(A\  xor\  C) \& (B \ xor \  C)$ 最小的正整数 $C$,如果有多个满足条件的 $C$,输出最小的 $C$. 分析 ...

  8. 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  9. Hdu 5439 Aggregated Counting (2015长春网络赛 ACM/ICPC Asia Regional Changchun Online 找规律)

    题目链接: Hdu 5439 Aggregated Counting 题目描述: 刚开始给一个1,序列a是由a[i]个i组成,最后1就变成了1,2,2,3,3,4,4,4,5,5,5.......,最 ...

  10. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

随机推荐

  1. 201421123042 《Java程序设计》第8周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: 答:查找 ...

  2. 201421123042 《Java程序设计》第5周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 接口 Comparable Arrays.sort -has a Lambda表达式 1.2尝试使用思维导图将这些关键词组织起来 ...

  3. python 常用算法学习(2)

    一,算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求 ...

  4. Mego(03) - ORM框架的新选择

    前言 从之前的两遍文章可以看出ORM的现状. Mego(01) - NET中主流ORM框架性能对比 Mego(02) - NET主流ORM框架分析 首先我们先谈下一个我们希望的ORM框架是什么样子的: ...

  5. JQ.ajax 各种参数及属性设置 ( 转载 )

    $.ajax({      type: "post",      url: url,      dataType:'html',      success: function(da ...

  6. OAuth是什么?

    一.OAuth的概念 1.问题的提出 2.应用场景 3.规范演进 二.OAuth的运行原理 1.参与者 访问私有数据需要用户参与(客户.用户.服务提供者) 访问公共数据不需要用户参与(客户.服务提供者 ...

  7. python入门(7)Python程序的风格

    python入门(7)Python程序的风格 Python采用缩进方式,写出来的代码就像下面的样子: # print absolute value of an integer: a = 100 if ...

  8. spring4——IOC之基于注解的依赖注入(DI )

    spring容器对于Bean的创建和对象属性的依赖注入提供了注解的支持,让我们在开发中能够更加便捷的实现对象的创建和对象属性的依赖注入.一,对于Bean的创建spring容器提供了以下四个注解的支持: ...

  9. Linux命令(持续更新中)

    命令名 用法 安装上传下载 yum install lrzsz   rz上传文件,sz下载文件 压缩 解压文件 tar -zxvf  文件名 压缩文件 tar -zcvf 文件名 删除非空目录: rm ...

  10. 相同域名不同端口的两个应用,cookie名字、路径都相同的情况下,会覆盖吗

    首先答案是: 会的. 本地测试流程: 两个相同的应用,代码完全相同:只是部署在两个不同的tomcat:域名都是localhost 应用A:部署在http://localhost:8087/ 应用B:部 ...