sklearn各种分类器简单使用
sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict
下面的示例为在iris数据集上用各种分类器进行分类:
#用各种方式在iris数据集上数据分类 #载入iris数据集,其中每个特征向量有四个维度,有三种类别
from sklearn import datasets
iris = datasets.load_iris()
print ("The iris' target names: ",iris.target_names)
x = iris.data
y = iris.target #待分类的两个样本
test_vector = [[1,-1,2.6,-2],[0,0,7,0.8]] #线性回归
from sklearn import linear_model
linear = linear_model.LinearRegression()
linear.fit(x,y)
print ("linear's score: ",linear.score(x,y))
print ("w:",linear.coef_)
print ("b:",linear.intercept_)
print ("predict: ",linear.predict(test_vector)) #逻辑回归
LR = linear_model.LogisticRegression()
LR.fit(x,y)
print ("LogisticRegression:",LR.predict(test_vector)) #决策树
from sklearn import tree
TR = tree.DecisionTreeClassifier(criterion='entropy')
TR.fit(x,y)
print ("DecisionTree:",TR.predict(test_vector)) #支持向量机
from sklearn import svm
SV = svm.SVC()
SV.fit(x,y)
print ("svm:",SV.predict(test_vector)) #朴素贝叶斯
from sklearn import naive_bayes
NB = naive_bayes.GaussianNB()
NB.fit(x,y)
print ("naive_bayes:",NB.predict(test_vector)) #K近邻
from sklearn import neighbors
KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)
KNN.fit(x,y)
print ("KNeighbors:",KNN.predict(test_vector))
'''
he iris' target names: ['setosa' 'versicolor' 'virginica']
linear's score: 0.930422367533
w: [-0.10974146 -0.04424045 0.22700138 0.60989412]
b: 0.192083994828
predict: [-0.50300167 2.26900897]
LogisticRegression: [1 2]
DecisionTree: [1 2]
svm: [2 2]
naive_bayes: [2 2]
KNeighbors: [0 1]
'''
sklearn各种分类器简单使用的更多相关文章
- 基于sklearn的分类器实战
已迁移到我新博客,阅读体验更佳基于sklearn的分类器实战 完整代码实现见github:click me 一.实验说明 1.1 任务描述 1.2 数据说明 一共有十个数据集,数据集中的数据属性有全部 ...
- sklearn 组合分类器
组合分类器: 组合分类器有4种方法: (1)通过处理训练数据集.如baging boosting (2)通过处理输入特征.如 Random forest (3)通过处理类标号.error_corre ...
- sklearn常见分类器的效果比较
sklearn 是 python 下的机器学习库. scikit-learn的目的是作为一个“黑盒”来工作,即使用户不了解实现也能产生很好的结果. 其功能非常强大,当然也有很多不足的地方,就比如说神经 ...
- sklearn机器学习实战-简单线性回归
记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...
- sklearn常见分类器(二分类模板)
# -*- coding: utf-8 -*- import pandas as pd import matplotlib matplotlib.rcParams['font.sans-serif'] ...
- 机器学习实战 | SKLearn最全应用指南
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...
- ZeroR-baseline分类器
ZeroR分类器是一种最简单的分类器,这种方法仅仅根据历史数据统计规律,而选择一种概率最大的类别作为未知样本的分类结果,也就是说对于任意一个未知样本,分类结果都是一样的.ZeroR分类器简单的以多数类 ...
- 安装sklearn过程
sklearn是scikit-learn的简称,诸多python工具包都需要这个库 安装顺序: wheel numpy scipy sklearn 因为这个库一直安装不好,都没有动力继续深造机器学习了 ...
- sklearn模型的属性与功能-【老鱼学sklearn】
本节主要讲述模型中的各种属性及其含义. 例如上个博文中,我们有用线性回归模型来拟合房价. # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit( ...
随机推荐
- oracle RANK() dense_rank()
[语法]RANK ( ) OVER ( [query_partition_clause] order_by_clause ) dense_RANK ( ) OVER ( [query_partitio ...
- Java练习 SDUT-1239_水仙花数
水仙花数 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 春天是鲜花的季节,水仙花就是其中最迷人的代表,数学上有个水仙花 ...
- 10Redis键空间通知(keyspace notifications)
Redis的键空间通知(keyspace notifications)功能是自2.8.0版本开始加入的,客户端可以通过订阅/发布(Pub/Sub)机制,接收那些以某种方式改变了Redis数据空间的事件 ...
- @loj - 2092@ 「ZJOI2016」大森林
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Y 家里有一个大森林,里面有 n 棵树,编号从 1 到 n. ...
- vs code python保存时pylint提示"Unable to import 'flask'"
在配置vscode python开发环境时,编写如下代码并保存时,会提示Unable to import 'flask' from flask import Flask app = Flask(__n ...
- 17-2 orm单表操作和多表操作
参考:https://www.cnblogs.com/liwenzhou/p/8660826.html 一 ORM单表操作 1 增删改查 1. 查询 1. 查所有 models.Publisher. ...
- day3_python之函数参数
一.形参 在定义函数时,括号内的参数称为形参,特点:形参就是变量名 def foo(x, y): # x=1,y=2 print(x) print(y) 二.实参 在调用函数时,括号内的参数成为实参, ...
- H3C 命令行帮助特性
- 使用colab平台进行训练
https://www.zhongxiaoping.cn/2018/12/01/%E4%BD%BF%E7%94%A8colab%E5%B9%B3%E5%8F%B0%E8%BF%9B%E8%A1%8C% ...
- 用mysql查询某字段是否有索引
可以使用SHOW INDEX FROM table_name来查看表的索引,从而查看字段的索引:查询结果中table为表名,key_name为索引名,Column_name为列名